Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia‐induced bacterial growth
نویسندگان
چکیده
Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti-diabetes drug, metformin, reduces glucose-induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose-induced P. aeruginosa infections across airway epithelial (Calu-3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre-treatment of the epithelium inhibited the glucose-induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5-aminoimidazole-4-carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa-induced reduction in the abundance of tight junction proteins, claudin-1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia-induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin-1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia-induced respiratory infections, avoiding the use of antibiotics.
منابع مشابه
Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa.
The specialized proresolution lipid mediator lipoxin A4 (LXA4) is abnormally produced in cystic fibrosis (CF) airways. LXA4 increases the CF airway surface liquid height and stimulates airway epithelial repair and tight junction formation. We report here a protective effect of LXA4 (1 nM) against tight junction disruption caused by Pseudomonas aeruginosa bacterial challenge together with a dela...
متن کاملMetformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose
BACKGROUND Diabetes is a risk factor for respiratory infection, and hyperglycaemia is associated with increased glucose in airway surface liquid and risk of Staphylococcus aureus infection. OBJECTIVES To investigate whether elevation of basolateral/blood glucose concentration promotes airway Staphylococcus aureus growth and whether pretreatment with the antidiabetic drug metformin affects thi...
متن کاملIncreased airway glucose increases airway bacterial load in hyperglycaemia
Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose ...
متن کاملHyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion
The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3- transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diab...
متن کاملRelation of exaggerated cytokine responses of CF airway epithelial cells to PAO1 adherence
In many model systems, cystic fibrosis (CF) phenotype airway epithelial cells in culture respond to P. aeruginosa with greater interleukin (IL)-8 and IL-6 secretion than matched controls. In order to test whether this excess inflammatory response results from the reported increased adherence of P. aeruginosa to the CF cells, we compared the inflammatory response of matched pairs of CF and non C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2016