Poisson Geometry of Directed Networks in a Disk

نویسندگان

  • MICHAEL GEKHTMAN
  • ALEK VAINSHTEIN
چکیده

We investigate Poisson properties of Postnikov’s map from the space of edge weights of a planar directed network into the Grassmannian. We show that this map is Poisson if the space of edge weights is equipped with a representative of a 6-parameter family of universal quadratic Poisson brackets and the Grasmannian is viewed as a Poisson homogeneous space of the general linear group equipped with an appropriately chosen R-matrix Poisson-Lie structure. We also prove that Poisson brackets on the Grassmannian arising in this way are compatible with the natural cluster algebra structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 35 41 v 2 [ m at h . Q A ] 2 0 Fe b 20 09 Poisson Geometry of Directed Networks in a Disk

We investigate Poisson properties of Postnikov’s map from the space of edge weights of a planar directed network into the Grassmannian. We show that this map is Poisson if the space of edge weights is equipped with a representative of a 6-parameter family of universal quadratic Poisson brackets and the Grasmannian is viewed as a Poisson homogeneous space of the general linear group equipped wit...

متن کامل

Poisson Geometry of Directed Networks in an Annulus

As a generalization of Postnikov’s construction [P], we define a map from the space of edge weights of a directed network in an annulus into a space of loops in the Grassmannian. We then show that universal Poisson brackets introduced for the space of edge weights in [GSV3] induce a family of Poisson structures on rational-valued matrix functions and on the space of loops in the Grassmannian. I...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Generalized Bäcklund–darboux Transformations for Coxeter–toda Flows from Cluster Algebra Perspective

We present the third in the series of papers describing Poisson properties of planar directed networks in the disk or in the annulus. In this paper we concentrate on special networks Nu,v in the disk that correspond to the choice of a pair (u, v) of Coxeter elements in the symmetric group S n and the corresponding networks N u,v in the annulus. Boundary measurements for Nu,v represent elements ...

متن کامل

Region Directed Diffusion in Sensor Network Using Learning Automata:RDDLA

One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009