Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery.

نویسندگان

  • Chao Qi
  • Ying-Jie Zhu
  • Feng Chen
چکیده

Calcium phosphates (CPs), as the major inorganic component of biological hard tissues, have been investigated for applications as biomaterials owing to their excellent biocompatibility. However, the traditional synthetic CPs are usually prepared from inorganic phosphorus and calcium sources. Herein, we report a new strategy for the synthesis of a variety of calcium-phosphate nanostructures, including porous amorphous calcium phosphate (ACP) microspheres, hydroxyapatite (HAP) nanorods, and ACP/HAP composite microspheres, by using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phosphorus source in aqueous solution in a rapid microwave-assisted hydrothermal reaction. The important role of FBP and the effect of the experimental conditions on the formation and evolution of the CPs nanostructures were investigated. The crystal phase and composition of the as-prepared products were characterized by powder X-ray diffraction (XRD), FTIR spectroscopy, and thermogravimetric (TGA) analysis and the morphologies of the products were characterized by SEM and TEM. This method is facile, rapid, surfactant-free, and environmentally friendly. The as-prepared porous ACP microspheres have a relatively high drug-loading capacity and good sustained drug-release behavior; thus, they are promising for applications in drug delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites

In this paper, we report a facile, rapid, and green strategy for the synthesis of cellulose/hydroxyapatite (HA) nanocomposites using an inorganic phosphorus source (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O)), or organic phosphorus sources (adenosine 5′-triphosphate disodium salt (ATP), creatine phosphate disodium salt tetrahydrate (CP), or D-fructose 1,6-bisphosphate trisodium salt o...

متن کامل

Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration

Biomaterials with both excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. In this study, simvastatin with both osteogenic and angiogenic activities was incorporated into the mesoporous hydroxyapatite microspheres (MHMs) synthesized through a microwave-assisted hydrothermal method using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phospho...

متن کامل

Fructose-1,6-bisphosphate stabilizes brain intracellular calcium during hypoxia in rats.

BACKGROUND AND PURPOSE Exogenously administered fructose-1,6-bisphosphate reduces neuronal injury from hypoxic or ischemic brain insults. To test the hypothesis that fructose-1,6-bisphosphate prevents changes in intracellular calcium ([Ca2+]i) and high-energy phosphate levels, we measured [Ca2+]i, intracellular pH (pHi), and adenosine triphosphate in cultured rat cortical astrocytes and cortica...

متن کامل

Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase.

Fructose-1,6-bisphosphatase (Fru-1,6-Pase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) requires two divalent metal ions to hydrolyze alpha-D-fructose 1,6-bisphosphate. Although not required for catalysis, monovalent cations modify the enzyme activity; K+ and Tl+ ions are activators, whereas Li+ ions are inhibitors. Their mechanisms of action are still unknown. We report here cr...

متن کامل

Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors.

Rat liver 6-phosphofructokinase (ATP-D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) was partially purified free of interfering enzymes by a rapid procedure. Fructose 2,6-bisphosphate, at micromolar concentrations, greatly stimulated the enzyme by increasing its affinity for fructose 6-phosphate and relieving the inhibition by ATP. Its action was synergistic with that of AMP. As a sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry, an Asian journal

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2013