Decreased L-type Ca2+ current in cardiac myocytes of type 1 diabetic Akita mice due to reduced phosphatidylinositol 3-kinase signaling.

نویسندگان

  • Zhongju Lu
  • Ya-Ping Jiang
  • Xin-Hua Xu
  • Lisa M Ballou
  • Ira S Cohen
  • Richard Z Lin
چکیده

OBJECTIVE Contraction of cardiac myocytes is initiated by Ca(2+) entry through the voltage-dependent L-type Ca(2+) channel (LTCC). Previous studies have shown that phosphatidylinositol (PI) 3-kinase signaling modulates LTCC function. Because PI 3-kinases are key mediators of insulin action, we investigated whether LTCC function is affected in diabetic animals due to reduced PI 3-kinase signaling. RESEARCH DESIGN AND METHODS We used whole-cell patch clamping and biochemical assays to compare cardiac LTCC function and PI 3-kinase signaling in insulin-deficient diabetic mice heterozygous for the Ins2(Akita) mutation versus nondiabetic littermates. RESULTS Diabetic mice had a cardiac contractility defect, reduced PI 3-kinase signaling in the heart, and decreased L-type Ca(2+) current (I(Ca,L)) density in myocytes compared with control nondiabetic littermates. The lower I(Ca,L) density in myocytes from diabetic mice is due at least in part to reduced cell surface expression of the LTCC. I(Ca,L) density in myocytes from diabetic mice was increased to control levels by insulin treatment or intracellular infusion of PI 3,4,5-trisphosphate [PI(3,4,5)P(3)]. This stimulatory effect was blocked by taxol, suggesting that PI(3,4,5)P(3) stimulates microtubule-dependent trafficking of the LTCC to the cell surface. The voltage dependence of steady-state activation and inactivation of I(Ca,L) was also shifted to more positive potentials in myocytes from diabetic versus nondiabetic animals. PI(3,4,5)P(3) infusion eliminated only the difference in voltage dependence of steady-state inactivation of I(Ca,L). CONCLUSIONS Decreased PI 3-kinase signaling in myocytes from type 1 diabetic mice leads to reduced Ca(2+) entry through the LTCC, which might contribute to the negative effect of diabetes on cardiac contractility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Persistent Sodium Current Due to Decreased PI3K Signaling Contributes to QT Prolongation in the Diabetic Heart

Diabetes is an independent risk factor for sudden cardiac death and ventricular arrhythmia complications of acute coronary syndrome. Prolongation of the QT interval on the electrocardiogram is also a risk factor for arrhythmias and sudden death, and the increased prevalence of QT prolongation is an independent risk factor for cardiovascular death in diabetic patients. The pathophysiological mec...

متن کامل

Role of SREBP-1 in the development of parasympathetic dysfunction in the hearts of type 1 diabetic Akita mice.

RATIONALE Diabetic autonomic neuropathy (DAN), a major complication of diabetes mellitus, is characterized, in part, by impaired cardiac parasympathetic responsiveness. Parasympathetic stimulation of the heart involves activation of an acetylcholine-gated K+ current, I(KAch), via a (GIRK1)2/(GIRK4)2 K+ channel. Sterol regulatory element binding protein-1 (SREBP-1) is a lipid-sensitive transcrip...

متن کامل

Glycogen Synthase Kinase-3β Inhibition Ameliorates Cardiac Parasympathetic Dysfunction in Type 1 Diabetic Akita Mice

Decreased heart rate variability (HRV) is a major risk factor for sudden death and cardiovascular disease. We previously demonstrated that parasympathetic dysfunction in the heart of the Akita type 1 diabetic mouse was due to a decrease in the level of the sterol response element-binding protein (SREBP-1). Here we demonstrate that hyperactivity of glycogen synthase kinase-3β (GSK3β) in the atri...

متن کامل

Integrative Physiology Role of SREBP-1 in the Development of Parasympathetic Dysfunction in the Hearts of Type 1 Diabetic Akita Mice

Rationale: Diabetic autonomic neuropathy (DAN), a major complication of diabetes mellitus, is characterized, in part, by impaired cardiac parasympathetic responsiveness. Parasympathetic stimulation of the heart involves activation of an acetylcholine-gated K current, IKAch, via a (GIRK1)2/(GIRK4)2 K channel. Sterol regulatory element binding protein-1 (SREBP-1) is a lipid-sensitive transcriptio...

متن کامل

Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function.

Diabetic cardiomyopathy is an important contributor to diastolic and systolic heart failure. We examined the nature and mechanism of the cardiomyopathy in Akita (Ins2(WT/C96Y)) mice, a model of genetic nonobese type 1 diabetes that recapitulates human type 1 diabetes. Cardiac function was evaluated in male Ins2WT/C96Y and their littermate control (Ins2WT/WT) mice using echocardiography and tiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 56 11  شماره 

صفحات  -

تاریخ انتشار 2007