Dual Transform based Feature Extraction for Face Recognition

نویسندگان

  • Ramesha K
  • K B Raja
چکیده

Face recognition is a biometric tool for authentication and verification, has great emphasis in both research and practical applications. Increased requirement on security, fully automated biometrics on personal identification and verification has received extensive attention over the past few years. In this paper Dual Transform based Feature Extraction for Face Recognition (DTBFEFR) is proposed. The images from database are of different size and format, and hence are to be converted into standard dimension, which is appropriate for applying DT-CWT. Variation due to expression and illumination are compensated by applying DWT on an image and also DWT reduces image dimension by decomposition. The DT-CWT is applied on LL subband, which is generated after two-level DWT, to generate DT-CWT coefficients to form feature vectors. The feature vectors of database and test face are compared using Random Forest, Euclidian Distance and Support Vector Machine matching algorithms. The correct recognition rate, false reject rate, false acceptance rate and efficiency are better in the case of proposed method as compared to existing techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

Iris Recognition Using Dual tree complex transform

A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by the individual. Unlike other biometric such as fingerprints, hand geometry and face recognition, the distinct aspect of iris comes from randomly distributed features. Iris recognition is regarded as the most reliable and accurate biometric identification system availabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011