Visualization of Space-Dependency of Reponses of Monte Carlo Calculations Using Legendre Polynomials
نویسندگان
چکیده
Visualization of space dependency of quantities of interest is not typically a task to set for Monte Carlo calculations. Often it is, though, useful and desired. Most commonly, it is done by segmenting the phase space into meshes on a surface, and obtaining estimates in each subregion. In this paper we investigate the possibility of using an orthogonal function basis for visual description of the quantities of interest and the determination of the coefficients by Monte Carlo. The basic formulas for determining the expansion coefficients and their variance from a Monte Carlo calculation are given. To test the flux expansion method, first a simple geometry problem is considered to represent the radial flux in a plane. Next, a more complicated geometry is chosen and a reconstruction of the neutron flux in a plane using Legendre polynomials is compared with the classical method of subdivision in segments and scoring the average flux over each segment. The Legendre expansion method shows more detail in the flux reconstruction. Using Laguerre polynomials for the flux expansion did not work out satisfactory.
منابع مشابه
Developement a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code
Background: Monte Carlo (MC) modeling of a linear accelerator is a prerequisite for Monte Carlo dose calculations in external beam radiotherapy. In this study, a simple and efficient model was developed for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code Materials and methods: The head of Elekta SL-25 linac was simulated for 6 and 18 MV photon beams using MCNP4C MC code. Energ...
متن کاملSolving the discrete S-model kinetic equations with arbitrary order polynomial approximations
A numerical method for solving the model Boltzmann equation using arbitrary order polynomials is presented. The S-model is solved by a discrete ordinate method with velocity space discretized with a truncated Hermite polynomial expansion. Physical space is discretized according to the Conservative Flux Approximation scheme with extension to allow non-uniform grid spacing. This approach, which u...
متن کاملComparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations
Background: Iodine brachytherapy sources with low photon energies have been widely used in treating cancerous tumors. Dosimetric parameters of brachytherapy sources should be determined according to AAPM TG-43U1 recommendations before clinical use. Monte Carlo codes are reliable tools in calculation of these parameters for brachytherapy sources. Materials and Methods: Dosimetric param...
متن کاملCalculations of absorbed dose and energy dependent of small-scale dosimeters for photons beam therapy
In this study, the energy dependency for dosimeters of air ionization chambers, lithium fluoride, silicon and plastic scintillator has been studied using the MCNPX Monte Carlo simulation code and simulated for gamma energy in the range of radiotherapy energy. The simulation results show that the response of each of the dosimeters for gamma photon beams in the energy range of 0.2 to 20 MeV varie...
متن کاملMonte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator
Background: One of the main problems of dedicated IORT accelerators is to determine dosimetric characteristics of the electron beams. Monte Carlo simulation of IORT accelerator head and produced beam will be useful to improve the accuracy of beam dosimetry.Materials and Methods: Liac accelerator head was modeled using the BEAMnrcMonte Carlo simulation system. Phase-space files were generated at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004