Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons

نویسندگان

  • Kassandra M. Ori-McKenney
  • Lily Yeh Jan
  • Yuh-Nung Jan
چکیده

Microtubule nucleation is essential for proper establishment and maintenance of axons and dendrites. Centrosomes, the primary site of nucleation in most cells, lose their function as microtubule organizing centers during neuronal development. How neurons generate acentrosomal microtubules remains unclear. Drosophila dendritic arborization (da) neurons lack centrosomes and therefore provide a model system to study acentrosomal microtubule nucleation. Here, we investigate the origin of microtubules within the elaborate dendritic arbor of class IV da neurons. Using a combination of in vivo and in vitro techniques, we find that Golgi outposts can directly nucleate microtubules throughout the arbor. This acentrosomal nucleation requires gamma-tubulin and CP309, the Drosophila homolog of AKAP450, and contributes to the complex microtubule organization within the arbor and dendrite branch growth and stability. Together, these results identify a direct mechanism for acentrosomal microtubule nucleation within neurons and reveal a function for Golgi outposts in this process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal Morphogenesis: Golgi Outposts, Acentrosomal Microtubule Nucleation, and Dendritic Branching

In large cells like neurons, how is microtubule polymerization initiated at large distances from the cell body and the main microtubule-organizing center? In this issue of Neuron, Ori-McKenney et al. (2012) demonstrate that Golgi outposts mediate acentrosomal microtubule nucleation and reveal it is crucial for dendrite morphogenesis.

متن کامل

γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts

Neurons have highly polarized arrangements of microtubules, but it is incompletely understood how microtubule polarity is controlled in either axons or dendrites. To explore whether microtubule nucleation by γ-tubulin might contribute to polarity, we analyzed neuronal microtubules in Drosophila containing gain- or loss-of-function alleles of γ-tubulin. Both increased and decreased activity of γ...

متن کامل

GM130 Is Required for Compartmental Organization of Dendritic Golgi Outposts

Golgi complexes (Golgi) play important roles in the development and function of neurons [1-3]. Not only are Golgi present in the neuronal soma (somal Golgi), they also exist in the dendrites as Golgi outposts [4-7]. Previous studies have shown that Golgi outposts serve as local microtubule-organizing centers [8] and secretory stations in dendrites [6, 9]. It is unknown whether the structure and...

متن کامل

Dendrite arborization requires the dynein cofactor NudE

The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Go...

متن کامل

Polarized Secretory Trafficking Directs Cargo for Asymmetric Dendrite Growth and Morphogenesis

Proper growth of dendrites is critical to the formation of neuronal circuits, but the cellular machinery that directs the addition of membrane components to generate dendritic architecture remains obscure. Here, we demonstrate that post-Golgi membrane trafficking is polarized toward longer dendrites of hippocampal pyramidal neurons in vitro and toward apical dendrites in vivo. Small Golgi outpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2012