Atomistic mechanisms of lithium insertion in amorphous silicon

نویسندگان

  • Shan Huang
  • Ting Zhu
چکیده

Understanding the lithium–silicon alloying behavior is essential for achievingmaximum charge capacity in the negative electrodes of lithium-ion batteries. Our atomistic simulations show that in amorphous silicon with a disordered network structure, inserted lithium atoms can find equilibrium positions in the interstices of big rings. Alternatively, lithium is incorporated into the network by the destruction and reformation of smaller rings. These atomic-level mechanisms are characterized by using the network topology measure of ring statistics, which are correlated to the lithiation responses of silicon electrodes. The results reveal the influence of lithium concentrations on the electro-chemical–mechanical behavior of silicon. Implications on the reversibility and dynamics of the lithiation process are discussed. © 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.

Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems w...

متن کامل

Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.

Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon's large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large v...

متن کامل

The Li Insertion/Extraction Characteristics of Amorphous Silicon Thin Films

Amorphous hydrogenated silicon (a-Si:H) is known to be a perspective material for negative electrodes of modern lithium-ion batteries. The electrochemical lithium insertion into thin-film a-Si:H electrodes is studied using chronopotentiometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The electrodes were grown on stainless-steel substrates by glow discharge at t...

متن کامل

Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor

Si is a promising anode material for Li-ion batteries, since it absorbs large amounts of Li. However, insertion of Li leads to 334% of volumetric expansion, huge stresses, and fracture; it can be suppressed by utilizing nanoscale anode structures. Continuum approaches to stress relaxation in LixSi, based on plasticity theory, are unrealistic, because the yield strength of LixSi is much higher t...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011