First Order Perturbations of Dirichlet Operators: Existence and Uniqueness
نویسنده
چکیده
We study perturbations of type B r of Dirichlet operators (L 0 ; D(L 0)) associated with Dirichlet forms of type E 0 (u; v) = 1=2
منابع مشابه
Existence and Uniqueness of Fixed Points for Mixed Monotone Operators with Perturbations
In this article, we study a class of mixed monotone operators with perturbations. Using a monotone iterative technique and the properties of cones, we show the existence and uniqueness for fixed points for such operators. As applications, we prove the existence and uniqueness of positive solutions for nonlinear integral equations of second-order on time scales. In particular, we do not assume t...
متن کاملNon-coercive Linear Elliptic Problems
We study here some linear elliptic partial differential equations (with Dirichlet, Fourier or mixed boundary conditions), to which convection terms (first order perturbations) are added that entail the loss of the classical coercivity property. We prove the existence, uniqueness and regularity results for the solutions to these problems. Mathematics Subject Classification (2000): 35J25.
متن کاملInverse Problems for Nonsmooth First Order Perturbations of the Laplacian
We consider inverse boundary value problems in Rn, n ≥ 3, for operators which may be written as first order perturbations of the Laplacian. The purpose is to obtain global uniqueness theorems for such problems when the coefficients are nonsmooth. We use complex geometrical optics solutions of Sylvester-Uhlmann type to achieve this. A main tool is an extension of the Nakamura-Uhlmann intertwinin...
متن کاملExistence and uniqueness of solutions for a periodic boundary value problem
In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.
متن کاملFunctional Calculus of Dirac Operators and Complex Perturbations of Neumann and Dirichlet Problems
We prove that the Neumann, Dirichlet and regularity problems for divergence form elliptic equations in the half space are well posed in L2 for small complex L∞ perturbations of a coefficient matrix which is either real symmetric, of block form or constant. All matrices are assumed to be independent of the transversal coordinate. We solve the Neumann, Dirichlet and regularity problems through a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996