Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides.
نویسندگان
چکیده
The 54-kDa extracellular metalloprotease ZapA is an important virulence factor of uropathogenic Proteus mirabilis. While ZapA has the ability to degrade host immunoglobulins (Igs), the dramatic attenuation of virulence in ZapA mutants suggests that this enzyme may have a broader spectrum of activity. This hypothesis was tested by in vitro assays with purified ZapA and an array of purified protein or peptide substrates. The data reveal that many proteins found in the urinary tract are substrates of ZapA proteolysis, including complement (C1q and C3), cell matrix (collagen, fibronectin, and laminin), and cytoskeletal proteins (actin and tubulin). Proteolysis of IgA and IgG was significantly enhanced by conditions that denatured the Igs. It was discovered that the antimicrobial peptides human beta-defensin 1 (hBD1) and LL-37 are readily cleaved by the enzyme. To the best of our knowledge, this is the first report of a bacterial protease capable of cleaving hBD1, a component of the human renal tubule innate immune response. Proteolysis of hBD1 resulted in ca. six peptides, while proteolysis of LL-37 resulted in at least nine products. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of the molecular masses of the reaction products indicated that ZapA preferred no distinct peptide bond. The antimicrobial activity of hBD1 and LL-37 was significantly reduced following ZapA treatment, suggesting that proteolysis results in inactivation of these peptides. The data suggest that a function of ZapA during urinary tract infections is the proteolysis of antimicrobial peptides associated with the innate immune response.
منابع مشابه
ZapA, a possible virulence factor from Proteus mirabilis exhibits broad protease substrate specificity.
The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized beta-chain of insulin to determine the enzyme spe...
متن کاملDevelopment of an operational substrate for ZapA, a metalloprotease secreted by the bacterium Proteus mirabilis.
The protease ZapA, secreted by Proteus mirabilis, has been considered to be a virulence factor of this opportunistic bacterium. The control of its expression requires the use of an appropriate methodology, which until now has not been developed. The present study focused on the replacement of azocasein with fluorogenic substrates, and on the definition of enzyme specificity. Eight fluorogenic s...
متن کاملBroad Spectrum Antimicrobial Activities and Phytochemical Analysis Ofalangium Salviifolium Flower Extract
The present investigation was aimed to evaluate the broad spectrum antimicrobial and phytochemical analysis of the alcoholic and aqueous extracts derived from the flowers of Alangium salviifolium. Aqueous and ethanolic extracts were prepared and tested on multiple drug resistant Gram-positive (Staphylococcus aureus, Enterococci and Staphylococcus epidermidis) and Gramnegative(Citrobacter, Pseud...
متن کاملTEM-72, a new extended-spectrum beta-lactamase detected in Proteus mirabilis and Morganella morganii in Italy.
A new natural TEM-2 derivative, named TEM-72, was identified in a Proteus mirabilis strain and in a Morganella morganii strain isolated in Italy in 1999. Compared to TEM-1, TEM-72 contains the following amino acid substitutions: Q39K, M182T, G238S, and E240K. Kinetic analysis showed that TEM-72 exhibits an extended-spectrum activity, including activity against oxyimino-cephalosporins and aztreo...
متن کاملAntimicrobial Susceptibility of Proteus mirabilis: Impact of Biofield Energy Treatment
Proteus mirabilis (P. mirabilis) is a species of Gram-negative and facultative anaerobic bacteria that shows swarming motility and urease activity. Proteus ranked third as the cause of hospital-acquired infections [1]. The organism is rod-shaped and motile bacterium with diverse mode of transmission [2]. P. mirabilis is a common causative organism of urinary tract infection (UTI) in the complic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 72 9 شماره
صفحات -
تاریخ انتشار 2004