Buck Converter Control for Lead Acid Battery Charger using Peak Current Mode

نویسندگان

  • Asep Nugroho
  • Estiko Rijanto
چکیده

Received Feb 4, 2017 Revised Apr 4, 2017 Accepted Apr 18, 2017 DC-DC buck converters are used for battery chargers in many applications including renewable energy sources, inverters, electric vehicles and robots. In this paper a buck converter was built and its controller was developed using peak current control mode for current loop and phase lag for voltage loop. This paper proposes a formulation of plant disturbance due to load variation to obtain a nominal model based on small signal approach. The controller was derived analytically based on the nominal model. Experiment results show that the buck control system functions well in regulating the output voltage. During the start up without any load it can reduce input voltage from 300 V to output voltage of 133.9 V in 19.3 ms. The developed controller can maintain the output voltage under load variation from no load to sudden load of 0.26 A. When it was implemented to charge a lead acid battery string, constant current of 3.36 A was charged in the first 173 minutes followed by constant voltage of 134.7 V until the end of charging at time 483 minutes. Thus, the developed control system of lead acid battery charger works well. Keyword:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching ZCS converter with a quasiresonant converter QRC was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the pro...

متن کامل

Methods of Battery Charging with Buck Converter Using Soft-Switching Techniques

ISSN 2250 – 1088 | © 2011 Bonfring Abstract--This paper is a detailed study on methods of battery charging with Buck Resonant converter using soft switching techniques like ZVS and ZCS. This study also presents the circuit configuration with the least components to realize a highly efficient solar energy battery charger with a zero-voltage and zero current switching resonant converter. The high...

متن کامل

International Journal of Advance Research and Innovation

This paper presents a optimal bidirectional battery charger. The proposed charger acts as a current source, i.e., acts in constant current (CC ) mode with a controlled output current in case of deep discharge of a battery, and as a voltage source, i.e., acts in constant-voltage (CV) mode with a controlled output voltage for near-100% battery state of charge. The proposed circuit is universal fr...

متن کامل

Bidirectional Buck-Boost Integrated Converter for Plug-in Hybrid Electric Vehicles

Background and Objectives: Power electronics infrastructures play an important role in charging different types of electric vehicles (EVs) especially Plug-in Hybrid EVs (PHEVs). Designing appropriate power converters is the topic of various studies. Method: In this paper, a novel bidirectional buck-boost multifunctional integrated converter is presented which is capable of handling battery and ...

متن کامل

Fuzzy Control of a Lead Acid Battery Charger JES

In this paper, an alternative battery charging control technique based on fuzzy logic for photovoltaic (PV) applications is presented. A PV module is connected to a buck type DC/DC power converter and a microcontroller based unit is used to control the lead acid battery charging voltage. The fuzzy control is used due to the simplicity of implementation, robustness and independence from the comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017