Motion Segmentation Using Inference in Dynamic Bayesian Networks

نویسنده

  • Marc Toussaint
چکیده

Existing formulations for optical flow estimation and image segmentation have used Bayesian Networks and Markov Random Field (MRF) priors to impose smoothness of segmentation. These approaches typically focus on estimation in a single time slice based on two consecutive images. We develop a motion segmentation framework for a continuous stream of images using inference in a corresponding Dynamic Bayesian Network (DBN) formulation. It realises a spatio-temporal integration of optical flow and segmentation information using a transition prior that incorporates spatial and temporal coherence constraints on the flow field and segmentation evolution. The main contribution is the embedding of these particular assumptions into a DBN formulation and the derivation of a computationally efficient two-filter inference method based on factored belief propagation (BP) that allows for onand offline parameter optimisation. The spatio-temporal coupling implemented in the transition priors ensures smooth flow field and segmentation estimates without using MRFs. The algorithm is tested on synthetic and real image sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

Dynamic Gesture Recognition Based on Dynamic Bayesian Networks

Techniques for recognizing and matching dynamic human gestures are becoming increasingly important with the CCTV surveillance system. To provide consistent dynamic gesture recognition system, Hierarchical Dynamic Vision System (HDVS) which based on dynamic Bayesian networks (DBNs) is proposed for automatically identifying human gestures in this paper. DBNs, directed graphical models of stochast...

متن کامل

Dynamic Imitation in a Humanoid Robot through Nonparametric Probabilistic Inference

We tackle the problem of learning imitative wholebody motions in a humanoid robot using probabilistic inference in Bayesian networks. Our inference-based approach affords a straightforward method to exploit rich yet uncertain prior information obtained from human motion capture data. Dynamic imitation implies that the robot must interact with its environment and account for forces such as gravi...

متن کامل

Realtime Segmentation and Recognition of Gestures using Hierarchical Markov Models

In this work, we present a realtime system for continuous gesture segmentation and recognition. The model is an extension of the system called Gesture Follower developed at Ircam, which is an hybrid model between Dynamic Time Warping and Hidden Markov Models. This previous model allows for a realtime temporal alignment between a template and an input gesture. Our model extends it by proposing a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007