Refold rigidity of convex polyhedra
نویسندگان
چکیده
We show that every convex polyhedron may be unfolded to one planar piece, and then refolded to a different convex polyhedron. If the unfolding is restricted to cut only edges of the polyhedron, we identify several polyhedra that are “edge-unfold rigid” in the sense that each of their unfoldings may only fold back to the original. For example, each of the 43,380 edge unfoldings of a dodecahedron may only fold back to the dodecahedron, and we establish that 11 of the 13 Archimedean solids are also edge-unfold rigid. We begin the exploration of which classes of polyhedra are and are not edge-unfold rigid, demonstrating infinite rigid classes through perturbations, and identifying one infinite nonrigid class: tetrahedra.
منابع مشابه
Rigidity of Circle Polyhedra in the 2-sphere and of Hyperideal Polyhedra in Hyperbolic 3-space
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean 3-space E to the context of circle polyhedra in the 2-sphere S. We prove that any two convex and proper non-unitary c-polyhedra with Möbiuscongruent faces that are consistently oriented are Möbius-congruent. Our result implies the global rigidity of convex inversive distance circle packings in the ...
متن کاملCauchy Rigidity of C -polyhedra
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean 3-space E to the context of circle polyhedra in the 2-sphere S. We prove that any two convex and bounded non-unitary c-polyhedra with Möbiuscongruent faces that are consistently oriented are Möbius-congruent. Our result implies the global rigidity of convex inversive distance circle packings as wel...
متن کاملOn the infinitesimal rigidity of weakly convex polyhedra
The main motivation here is a question: whether any polyhedron which can be subdivided into convex pieces without adding a vertex, and which has the same vertices as a convex polyhedron, is infinitesimally rigid. We prove that it is indeed the case for two classes of polyhedra: those obtained from a convex polyhedron by “denting” at most two edges at a common vertex, and suspensions with a natu...
متن کاملSmall deformations of polygons and polyhedra
We describe the first-order variations of the angles of Euclidean, spherical or hyperbolic polygons under infinitesimal deformations such that the lengths of the edges do not change. Using this description, we introduce a quadratic invariant on the space of first-order deformations of a polygon. For convex polygons, this quadratic invariant has a positivity property, leading to a new proof of t...
متن کاملInfinitesimally Rigid Polyhedra. I. Statics of Frameworks
From the time of Cauchy, mathematicians have studied the motions of convex polyhedra, with the faces held rigid while changes are allowed in the dihedral angles. In the 1940s Alexandrov proved that, even with additional vertices along the natural edges, and with an arbitrary triangulation of the natural faces on these vertices, such polyhedra are infinitesimally rigid. In this paper the dual (a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Geom.
دوره 46 شماره
صفحات -
تاریخ انتشار 2013