Extracting speech features from human speech-like noise

نویسندگان

  • Daisuke Kobayashi
  • Shoji Kajita
  • Kazuya Takeda
  • Fumitada Itakura
چکیده

Human speech-like noise (HSLN) is a kind of bubble noise generated by superimposing independent speech signals typically more than one thousand times. Since the basic feature of HSLN varies from that of overlapped speech to stationary noise with keeping long time spectra in the same shape, we investigate perceptual discrimination of speech from stationary noise and its acoustic correlates using HSLN of various numbers of superposition. First we confirm the perceptual score, i.e. how much the HSLN sounds like stationary noise, and that the number of superposition of HSLN is proportional by subjective tests. Then, we show that the amplitude distribution of difference signal of HSLN approaches the Gaussian distribution from the Gamma distribution as the number of superposition increases. The other subjective test to perceive three HSLN of different dynamic characteristics clarifys that the temporal change of spectral envelope plays an important roll in discriminating speech from noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

Robust Speech Recognition in a Car Using a Microphone Array

Performance of automatic speech recognition relies on a vast amount of training speech data mostly recorded with little or no background noise. The performance degrades significantly with existence of background noise, which increases type mismatch between train and test environments. Speech enhancement techniques can reduce the amount of type mismatch by extracting reliable speech features fro...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996