Girsanov and Feynman-kac Type Transformations for Symmetric Markov Processes
نویسنده
چکیده
– Studied in this paper is the transformation of an arbitrary symmetric Markov process X by multiplicative functionals which are the exponential of continuous additive functionals of X having zero quadratic variations. We characterize the transformed semigroups by their associated quadratic forms. This is done by first identifying the symmetric Markov process under Girsanov transform, which may be of independent interest, and then applying Feynman– Kac transform to the Girsanov transformed process. Stochastic analysis for discontinuous martingales is used in our approach. 2002 Éditions scientifiques et médicales Elsevier SAS Math. Subj. Class. (1991): Primary 60J45; secondary 60J57; 31C25 RÉSUMÉ. – Dans ce papier, nous étudions la transformation d’un processus symétrique de Markov X par une functionelle multiplicative, qui est l’exponentielle d’une function additive continue, de variation quadratique nulle. Les semi-groupes transformés seront caracterisés par leur formes quadratiques associées. On traite d’abord le cas de la transformation de Girsanov (qui peut avoir un interêt en sai), puis on applique la transformation de Feynman–Kac au processus transformé. L’analyse strochastique pour les martingales discontinues est utilisée dans notre approche. 2002 Éditions scientifiques et médicales Elsevier SAS
منابع مشابه
On General Perturbations of Symmetric Markov Processes
Let X be a symmetric right process, and let Z = {Zt, t ≥ 0} be a multiplicative functional of X that is the product of a Girsanov transform, a Girsanov transform under time-reversal and a continuous Feynman-Kac transform. In this paper we derive necessary and sufficient conditions for the strong L-continuity of the semigroup {Tt, t ≥ 0} given by Ttf(x) = Ex [Ztf(Xt)], expressed in terms of the ...
متن کاملDrift transforms and Green function estimates for discontinuous processes
In this paper, we consider Girsanov transforms of pure jump type for discontinuous Markov processes. We show that, under some quite natural conditions, the Green functions of the Girsanov transformed process are comparable to those of the original process. As an application of the general results, the drift transform of symmetric stable processes is studied in detail. In particular, we show tha...
متن کاملEstimates on the Transition Densities of Girsanov Transforms of Symmetric Stable Processes
In this paper, we first study a purely discontinuous Girsanov transform which is more general than that studied in Chen and Song [(2003), J. Funct. Anal. 201, 262–281]. Then we show that the transition density of any purely discontinuous Girsanov transform of a symmetric stable process is comparable to the transition density of the symmetric stable process. The same is true for the Girsanov tra...
متن کاملAbsolute Continuity of Symmetric Markov Processes
We study Girsanov’s theorem in the context of symmetric Markov processes, extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov transformations of “gradient type”. We investigate the most general Girsanov transformation leading to another symmetric Markov process. This investigation requires an extension of the forward-backward martingale method of Lyons-Zheng, to cover the cas...
متن کاملFeynman-kac Penalisations of Symmetric Stable Pro- Cesses
In [9], [10], B. Roynette, P. Vallois and M. Yor have studied limit theorems for Wiener processes normalized by some weight processes. In [16], K. Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmetric stable process normalized by non-negative functions of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems for Markov pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002