Towards Open String Mirror Symmetry for One–Parameter Calabi–Yau Hypersurfaces

نویسندگان

  • Johanna Knapp
  • Emanuel Scheidegger
چکیده

This work is concerned with branes and differential equations for one–parameter Calabi–Yau hypersurfaces in weighted projective spaces. For a certain class of B–branes we derive the inhomogeneous Picard–Fuchs equations satisfied by brane superpotential. In this way we arrive at a prediction for the real BPS invariants for holomorphic maps of worldsheets with low Euler characteristics, ending on the mirror A–branes. ∗[email protected][email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mirror Symmetry for Toric Branes on Compact Hypersurfaces

We use toric geometry to study open string mirror symmetry on compact Calabi–Yau manifolds. For a mirror pair of toric branes on a mirror pair of toric hypersurfaces we derive a canonical hypergeometric system of differential equations, whose solutions determine the open/closed string mirror maps and the partition functions for spheres and discs. We define a linear sigma model for the brane geo...

متن کامل

Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry

We consider regular Calabi-Yau hypersurfaces in N -dimensional smooth toric varieties. On such a hypersurface in the neighborhood of the large complex structure limit point we construct a fibration over a sphere S whose generic fibers are tori T. Also for certain one-parameter families of such hypersurfaces we show that the monodromy transformation is induced by a translation of the T fibration...

متن کامل

Some properties of hypergeometric series associated with mirror symmetry

We show that certain hypergeometric series used to formulate mirror symmetry for Calabi-Yau hypersurfaces, in string theory and algebraic geometry, satisfy a number of interesting properties. Many of these properties are used in separate papers to verify the BCOV prediction for the genus one Gromov-Witten invariants of a quintic threefold and more generally to compute the genus one Gromov-Witte...

متن کامل

Mirror Symmetry and Integral Variations of Hodge Structure Underlying One Parameter Families of Calabi-Yau Threefolds

This proceedings note introduces aspects of the authors’ work relating mirror symmetry and integral variations of Hodge structure. The emphasis is on their classification of the integral variations of Hodge structure which can underly families of Calabi-Yau threefolds over P \ {0, 1,∞} with b = 4, or equivalently h = 1, and the related issues of geometric realization of these variations. The pr...

متن کامل

Mirror Symmetry and Supermanifolds

We develop techniques for obtaining the mirror of Calabi-Yau supermanifolds as super Landau-Ginzburg theories. In some cases the dual can be equivalent to a geometry. We apply this to some examples. In particular we show that the mirror of the twistorial Calabi-Yau CP becomes equivalent to a quadric in CP×CP as had been recently conjectured (in the limit where the Kähler parameter of CP, t → ±∞...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008