Hamiltonian spaces for Manin pairs over manifolds

نویسندگان

  • David Iglesias Ponte
  • Ping Xu
چکیده

We introduce the notion of Hamiltonian spaces for Manin pairs over manifolds, using the so-called generalized Dirac structures. As an example, we describe Hamiltonian spaces of a quasi-Lie bialgebroid using this general framework. We also discuss reduction of Hamiltonian spaces of this general type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac Geometry, Quasi–Poisson Actions and D/G–Valued Moment Maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

D/G-valued moment maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Formal Frobenius Manifold Structure on Equivariant Cohomology

For a closed Kähler manifold with a Hamiltonian action of a connected compact Lie group by holomorphic isometries, we construct a formal Frobenius manifold structure on the equivariant cohomology by exploiting a natural DGBV algebra structure on the Cartan model. The notion of Frobenius manifolds was introduced by Dubrovin [11, 12]. It gives a coordinate free formulation of solutions to the WDV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008