Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner.

نویسندگان

  • Atsushi Hirao
  • Alison Cheung
  • Gordon Duncan
  • Pierre-Marie Girard
  • Andrew J Elia
  • Andrew Wakeham
  • Hitoshi Okada
  • Talin Sarkissian
  • Jorge A Wong
  • Takashi Sakai
  • Elisa De Stanchina
  • Robert G Bristow
  • Toshio Suda
  • Scott W Lowe
  • Penny A Jeggo
  • Stephen J Elledge
  • Tak W Mak
چکیده

In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage.

DNA damage is a key initiator of neuronal death. We have previously shown that the tumor suppressor p53, in conjunction with cyclin-dependent kinases (CDKs), regulates the mitochondrial pathway of death in neurons exposed to genotoxic agents. However, the mechanisms by which p53 is regulated is unclear. Presently, we show that p53 is phosphorylated on Ser-15 following DNA damage and this occurs...

متن کامل

Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner.

Chk2 is a serine/threonine kinase that signals to cell cycle arrest, DNA repair, and apoptotic pathways following DNA damage. It is activated by phosphorylation in response to ionizing radiation, UV light, stalled replication forks, and other types of DNA damage. Hypoxia is a common feature of solid tumors and has been shown to affect the regulation of many genes, including several DNA repair f...

متن کامل

Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase

The ataxia telangiectasia mutated (ATM) kinase is a key tumor suppressor that regulates numerous cell cycle checkpoints as well as apoptosis. Here, we report that ATM is a critical player in the regulation of apoptosis and lymphomagenesis in the presence of c-myc. In turn, deletion of the inhibitory ATM phosphatase, Wip1, results in ATM up-regulation and suppression of Emicro-myc-induced B cell...

متن کامل

ATM regulates ATR chromatin loading in response to DNA double-strand breaks

DNA double-strand breaks (DSBs) are among the most deleterious lesions that can challenge genomic integrity. Concomitant to the repair of the breaks, a rapid signaling cascade must be coordinated at the lesion site that leads to the activation of cell cycle checkpoints and/or apoptosis. In this context, ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR) protein kinases are the ...

متن کامل

Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation.

Eukaryotic cells activate an evolutionarily conserved set of proteins that rapidly induce cell cycle arrest to prevent replication or segregation of damaged DNA before repair is completed. In response to ionizing radiation (IR), the cell cycle checkpoint kinase, Chk2 (hCds1), is phosphorylated and activated in an ataxia telangiectasia mutated (ATM)-dependent manner. Here we show that the ATM pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 18  شماره 

صفحات  -

تاریخ انتشار 2002