Ultra-high resolution Fourier domain optical coherence tomography for old master paintings.
نویسندگان
چکیده
In the last 10 years, Optical Coherence Tomography (OCT) has been successfully applied to art conservation, history and archaeology. OCT has the potential to become a routine non-invasive tool in museums allowing cross-section imaging anywhere on an intact object where there are no other methods of obtaining subsurface information. While current commercial OCTs have shown potential in this field, they are still limited in depth resolution (> 4 μm in paint and varnish) compared to conventional microscopic examination of sampled paint cross-sections (~1 μm). An ultra-high resolution fiber-based Fourier domain optical coherence tomography system with a constant axial resolution of 1.2 μm in varnish or paint throughout a depth range of 1.5 mm has been developed. While Fourier domain OCT of similar resolution has been demonstrated recently, the sensitivity roll-off of some of these systems are still significant. In contrast, this current system achieved a sensitivity roll-off that is less than 2 dB over a 1.2 mm depth range with an incident power of ~1 mW on the sample. The high resolution and sensitivity of the system makes it convenient to image thin varnish and glaze layers with unprecedented contrast. The non-invasive 'virtual' cross-section images obtained with the system show the thin varnish layers with similar resolution in the depth direction but superior clarity in the layer interfaces when compared with conventional optical microscope images of actual paint sample cross-sections obtained micro-destructively.
منابع مشابه
Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology.
We present ultra-high resolution optical coherence tomography (OCT) structural intensity and optical Doppler tomography (ODT) flow velocity images of the human retina in vivo. The ultra-high speed OCT system is based on Spectral Domain or Fourier Domain technology, which provides a sensitivity advantage over conventional OCT of more than 2 orders of magnitude. This sensitivity improvement allow...
متن کاملSpectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
OBJECTIVE To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. METHODS Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical coherence tomography system was developed. RESULTS In vivo images of the retina, the optic nerve he...
متن کاملQuantitative phase imaging with spectral-domain optical coherence phase microscopy
Spectral domain optical coherence phase microscopy provides high resolution quantitative phase measurement. Using a common path Fourier domain optical coherence tomography system, this technique is capable of excellent phase stability of less than 1 milliradian and high imaging speed of up to several hundred KHz Aline rate. The limitation of 2π ambiguity restriction can be overcome by the use o...
متن کاملUltra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman
We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed...
متن کاملاندازهگیری همزمان ضریب شکست و ضخامت فیزیکی دستگاههای چندلایهای با استفاده از نتایج مقطعنگاری همدوسی اپتیکی در فضای فوریه
In fourier domain optical coherence tomography, we can measure the optical thickness ( refractive index n times thickness d), to obtain the retinal layers in order to diagnose many disorders. In this work, we introduce a new method for measurement of refractive index and physical thickness of multiple layers simultaneously by Fourier domain optical coherence tomography, without additional infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2015