Family of Invariant Cantor Sets as orbits of Differential Equations II: Julia Sets

نویسندگان

  • Yi-Chiuan Chen
  • Tomoki Kawahira
  • Hua-Lun Li
  • Juan-Ming Yuan
چکیده

The Julia set of the quadratic map fμ(z) = μz(1 − z) for μ not belonging to the Mandelbrot set is hyperbolic, thus varies continuously. It follows that a continuous curve in the exterior of the Mandelbrot set induces a continuous family of Julia sets. The focus of this article is to show that this family can be obtained explicitly by solving the initial value problem of a system of infinitely coupled differential equations. A key point is that the required initial values can be obtained from the antiintegrable limit μ → ∞. The system of infinitely coupled differential equations reduces to a finitely coupled one if we are only concerned with some invariant finite subset of the Julia set. Therefore, it can be employed to find periodic orbits as well. We conduct numerical approximations to the Julia sets when parameter μ is located at the Misiurewicz points with external angle 1/2, 1/6, or 5/12. We approximate these Julia sets by their invariant finite subsets that are integrated along the reciprocal of corresponding external rays of the Mandelbrot set starting from the anti-integrable limit μ = ∞. When μ is at the Misiurewicz point of angle 1/128, a 98-period orbit of prescribed itinerary obtained by this method is presented, without having to find a root of a 298-degree polynomial. The Julia sets (or their subsets) obtained are independent of integral curves, but in order to make sure that the integral curves are contained in the exterior of the Mandelbrot set, we use the external rays of the Mandelbrot set as integral curves. Two ways of obtaining the external rays are discussed, one based on the series expansion (the Jungreis-Ewing-Schober algorithm), the other based on Newton’s method (the OTIS algorithm). We establish tables comparing the values of some Misiurewicz points of small denominators obtained by these two algorithms with the theoretical values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Family of Invariant Cantor Sets as orbits of Differential Equations

The invariant Cantor sets of the logistic map gμ(x) = μx(1 − x) for μ > 4 are hyperbolic and form a continuous family. We show that this family can be obtained explicitly through solutions of infinitely coupled differential equations due to the hyperbolicity. The same result also applies to the tent map Ta(x) = a(1/2− |1/2− x|) for a > 2.

متن کامل

The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators

In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...

متن کامل

Checkerboard Julia Sets for Rational Maps

In this paper, we consider the family of rational maps Fλ(z) = z n + λ zd , where n ≥ 2, d ≥ 1, and λ ∈ C. We consider the case where λ lies in the main cardioid of one of the n − 1 principal Mandelbrot sets in these families. We show that the Julia sets of these maps are always homeomorphic. However, two such maps Fλ and Fμ are conjugate on these Julia sets only if the parameters at the center...

متن کامل

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

A Geometric Approach to Invariant Sets for Dynamical Systems

In this article, we present a geometric framework to study invariant sets of dynamical systems associated with differential equations. This framework is based on properties of invariant sets for an area functional. We obtain existence results for heteroclinic and periodic orbits. We also implement this approach numerically by means of the steepest descent method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011