Hodge Spaces of Real Toric Varieties

نویسنده

  • VALERIE HOWER
چکیده

We define the Z2 Hodge spaces Hpq(Σ) of a fan Σ. If Σ is the normal fan of a reflexive polytope ∆ then we use polyhedral duality to compute the Z2 Hodge Spaces of Σ. In particular, if the cones of dimension at most e in the face fan Σ of ∆ are smooth then we compute Hpq(Σ) for p < e− 1. If Σ is a smooth fan then we completely determine the spaces Hpq(Σ) and we show XΣ is maximal, meaning that the sum of the Z2 Betti numbers of XΣ(R) is equal to the sum of the Z2 Betti numbers of XΣ(C).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Form Expressions for Hodge Numbers of Complete Intersection Calabi-Yau Threefolds in Toric Varieties

We use Batyrev-Borisov’s formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniq...

متن کامل

Hodge Spaces of Real Toric Varieties by Valerie Hower ( Under the direction of

We introduce the notion of a cosheaf on a fan Σ and define the Z2 Hodge spaces Hpq(Σ), which are the homology groups Hp(∧E ) of the qth exterior power of the cosheaf E on Σ. Geometrically, for σ ∈ Σ the stalk Eσ of the cosheaf E is the compact real torus in the real orbit Oσ(R) of the real toric variety XΣ(R). The Z2 Hodge spaces Hpq(Σ) are indexed by pairs p, q with 0 ≤ q ≤ p ≤ d, where d = di...

متن کامل

On the Hodge structure of degenerating hypersurfaces in toric varieties

We introduce an algebraic method for describing the Hodge filtration of degenerating hypersurfaces in projective toric varieties. For this purpose, we show some fundamental properties of logarithmic differential forms on proper equivariant morphisms of toric varieties.

متن کامل

Orientability of Real Toric Varieties

We characterize the orientability of an abstract real toric variety as well as the orientability of a toric subvariety of a sphere. We also determine the number of components of the smooth locus of a toric variety. These results are proven for an extension of the Davis-Januskiewicz notion of a small cover to singular spaces. We characterize the orientability of toric varieties associated to pos...

متن کامل

Toric Degeneration of Weight Varieties and Applications

We show that a weight variety, which is a quotient of a flag variety by the maximal torus, admits a flat degeneration to a toric variety. In particular, we show that the moduli spaces of spatial polygons degenerate to polarized toric varieties with moment polytopes defined by the lengths of their diagonals. We extend these results to more general Flaschka-Millson hamiltonians on the quotients o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008