Superconvergence Properties of Discontinuous Galerkin Methods for Two-point Boundary Value Problems

نویسنده

  • HONGSEN CHEN
چکیده

Three discontinuous Galerkin methods (SIPG, NIPG, DG) are considered for solving a one-dimensional elliptic problem. Superconvergence for the error at the interior node points and the derivative of the error at Gauss points are considered. All theorectical results obtained in the paper are supported by the results of numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence and a Posteriori Error Estimates of a Local Discontinuous Galerkin Method for the Fourth-order Initial-boundary Value Problems Arising in Beam Theory

Abstract. In this paper, we investigate the superconvergence properties and a posteriori error estimates of a local discontinuous Galerkin (LDG) method for solving the one-dimensional linear fourth-order initial-boundary value problems arising in study of transverse vibrations of beams. We present a local error analysis to show that the leading terms of the local spatial discretization errors f...

متن کامل

Superconvergence of the local discontinuous Galerkin method for linear fourth-order time-dependent problems in one space dimension

In this paper we investigate the superconvergence of local discontinuous Galerkin (LDG) methods for solving one-dimensional linear time-dependent fourth-order problems. We prove that the error between the LDG solution and a particular projection of the exact solution, ēu , achieves ( k+ 2 ) th-order superconvergence when polynomials of degree k (k 1) are used. Numerical experiments with Pk poly...

متن کامل

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D

It has been observed from the authors’ numerical experiments (2007) that the Local Discontinuous Galerkin (LDG) method converges uniformly under the Shishkin mesh for singularly perturbed two-point boundary problems of the convection-diffusion type. Especially when using a piecewise polynomial space of degree k, the LDG solution achieves the optimal convergence rate k+1 under the L2-norm, and a...

متن کامل

The Discontinuous Galerkin Method for Two-Dimensional Hyperbolic Problems. Part I: Superconvergence Error Analysis

In this paper we investigate the superconvergence properties of the discontinuous Galerkin method applied to scalar first-order hyperbolic partial differential equations on triangular meshes. We show that the discontinuous finite element solution is O(hp+2) superconvergent at the Legendre points on the outflow edge for triangles having one outflow edge. For triangles having two outflow edges th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005