Prio: Private, Robust, and Scalable Computation of Aggregate Statistics
نویسندگان
چکیده
This paper presents Prio, a privacy-preserving system for the collection of aggregate statistics. Each Prio client holds a private data value (e.g., its current location), and a small set of servers compute statistical functions over the values of all clients (e.g., the most popular location). As long as at least one server is honest, the Prio servers learn nearly nothing about the clients’ private data, except what they can infer from the aggregate statistics that the system computes. To protect functionality in the face of faulty or malicious clients, Prio uses secret-shared non-interactive proofs (SNIPs), a new cryptographic technique that yields a hundred-fold performance improvement over conventional zero-knowledge approaches. Prio extends classic private aggregation techniques to enable the collection of a large class of useful statistics. For example, Prio can perform a least-squares regression on high-dimensional client-provided data without ever seeing the data in the clear.
منابع مشابه
An Efficient Secret Sharing-based Storage System for Cloud-based Internet of Things
Internet of things (IoTs) is the newfound information architecture based on the internet that develops interactions between objects and services in a secure and reliable environment. As the availability of many smart devices rises, secure and scalable mass storage systems for aggregate data is required in IoTs applications. In this paper, we propose a new method for storing aggregate data in Io...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملPoster: Solving Private Systems of Linear Equations with Garbled Circuits
The advent of the big data revolution has made it possible to analyse ever more complex datasets for scientific and social insights. At the same time, a widespread concern for the use given to these datasets has spurred an interest in privacypreserving data analysis. The goal of this line of research is to build frameworks allowing individuals to contribute their personal data for aggregate ana...
متن کاملVeriable Order Statistics for Secure Aggregation
In-network aggregation can save significant bandwidth in a distributed query systems, but is subject to attack by adversaries. Prior work addressed settings where data sources are trusted, but the aggregation infrastructure needs to be secured. We study extensions that also make aggregate queries robust to adversarial data sources, which can inject spurious values into the data stream to be agg...
متن کاملDynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture
Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017