Local directional pattern variance (ldpv): a robust feature descriptor for facial expression recognition
نویسندگان
چکیده
Automatic facial expression recognition is a challenging problem in computer vision, and has gained significant importance in the applications of human-computer interactions. The vital component of any successful expression recognition system is an effective facial representation from face images. In this paper, we have derived an appearance-based feature descriptor, the Local Directional Pattern Variance (LDPv), which characterizes both the texture and contrast information of facial components. The LDPv descriptor is a collection of Local Directional Pattern (LDP) codes weighted by their corresponding variances. The feature dimension is then reduced by extracting the most discriminative elements of the representation with Principal Component Analysis (PCA). The recognition performance based on our LDPv descriptor has been evaluated using Cohn-Kanade expression database with a Support Vector Machine (SVM) classifier. The discriminative strength of LDPv representation is also assessed over a useful range of low resolution images. Experimental results with prototypic expressions show that the LDPv descriptor has achieved a higher recognition rate, as compared to other existing appearance-based feature descriptors.
منابع مشابه
Feature Extraction based on Local Directional Pattern with SVM Decision-level Fusion for Facial Expression Recognition
Facial expression recognition, as one of the important topics in pattern recognition and computer vision, has broad applications in fields of human-computer interaction, psychological behavior analysis, image understanding. This paper presents a novel facial expression recognition method based on global and local features extraction and facial recognition using decision-level fusion. We first e...
متن کاملFace Recognition Based on Local Directional Pattern Variance (LDPv)
Face recognition is becoming very popular tools for a successful human commuter interaction system. It seems to be a good compromise between reliability and social acceptance and balances security and privacy well. In this paper, we have presented a new appearance-based feature descriptor, the local directional pattern Variance (LDPv), to represent facial components and analyzed its performance...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFacial Expression Recognition Based on Local Directional Pattern Using SVM Decision-level Fusion
This paper presents a novel expression recognition method based on global and local features with decision-level fusion. We first extract Local Directional Pattern (LDP) global features of the whole face which can guarantee basic expression difference and decrease the influence of no-facial region meanwhile, then the Local Directional Pattern Variance (LDPv) descriptor is used to extract local ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 9 شماره
صفحات -
تاریخ انتشار 2012