A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images
نویسندگان
چکیده
It is very important to detect stages of multiple sclerosis (MS) lesions in order to exactly quantify involved voxels. In this paper, a novel method is proposed for automatic detection of different stages of MS lesions in the brain magnetic resonance (MR) images, in fluid attenuated inversion recovery (FLAIR) studies. In the proposed method, firstly, MS lesion voxels are segmented in FLAIR images based on adaptive mixtures method (AMM) and Markov Random Field (MRF) model. Then, signal intensity of each lesion voxel is modeled as a linear combination of signals related to the normal and also abnormal parts, in the voxel. By applying an optimal threshold, voxels with new intensities are primarily classified into two stages: previously destructed (chronic) and on going destruction (acute) lesions. Finally, the acute lesions, according to their activities, are classified, by another optimal threshold, into two new stages, early and recent acute. Evaluation of the proposed method was performed by manual segmentation of chronic and enhanced (early) acute lesions in gadolinium enhanced T1-weighted (Gad-E-T1-w) images by studying T1-weighted (T1-w) and T2-weighted (T2-w) images, using similarity criteria. The results showed a good correlation between the lesions segmented by the proposed method and by experts manually. Thus, the suggested method is useful to reduce the need for paramagnetic materials in contrast enhanced MR imaging which is a routine procedure for separation of acute and chronic lesions.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملThe Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملIncreasing the Contrast of the Brain MR FLAIR Images Using Fuzzy Membership Functions and Structural Similarity Indices in Order to Segment MS Lesions
Segmentation is an important step for the diagnosis of multiple sclerosis (MS). This paper presents a new approach to the fully automatic segmentation of MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance (MR) images. With the aim of increasing the contrast of the FLAIR MR images with respect to the MS lesions, the proposed method first estimates the fuzzy memberships ...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملEvaluation the FLAIR Sensitivity and DWI Post-inject in Comparison with Delayed Enhancement T1w for Better Detection of Active MS Lesions
Background: Multiple sclerosis (MS) is a chronic, typically progressive and most common autoimmune disease which damaged the central nervous system. According to the reports in 2008, this disorder has affected 2 and 2.5 million people globally. While the reason is not clear, proposed causes for this include immunologic, environmental, infectious and genetic factors, and sexuality. MS can cause ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2008