Simplifying Neural Nets by Discovering Flat Minima
نویسندگان
چکیده
We present a new algorithm for finding low complexity networks with high generalization capability. The algorithm searches for large connected regions of so-called ''fiat'' minima of the error function. In the weight-space environment of a "flat" minimum, the error remains approximately constant. Using an MDL-based argument, flat minima can be shown to correspond to low expected overfitting. Although our algorithm requires the computation of second order derivatives, it has backprop's order of complexity. Experiments with feedforward and recurrent nets are described. In an application to stock market prediction, the method outperforms conventional backprop, weight decay, and "optimal brain surgeon" .
منابع مشابه
Flat Minima
We present a new algorithm for finding low-complexity neural networks with high generalization capability. The algorithm searches for a "flat" minimum of the error function. A flat minimum is a large connected region in weight space where the error remains approximately constant. An MDL-based, Bayesian argument suggests that flat minima correspond to "simple" networks and low expected overfitti...
متن کاملLow-Complexity Coding and Decoding
We present a novel approach to sensory coding and unsu-pervised learning. It is called \Low-complexity coding and decoding" (Lococode). Unlike previous methods it explicitly takes into account the information-theoretic complexity of the code generator: lococodes (1) convey information about the input data and (2) can be computed and decoded by low-complexity mappings. To implement Lococode we t...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملLococode
\Low-complexity coding and decoding" (Lococode) is a novel approach to sensory coding and unsupervised learning. Unlike previous methods it explicitly takes into account the information-theoretic complexity of the code generator: lococodes (1) convey information about the input data and (2) can be computed and decoded by low-complexity mappings. We implement Lococode by training autoassociators...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994