A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings.
نویسندگان
چکیده
This study demonstrates the practical application of the pattern grouping algorithm (PGA), presented in the companion paper (Tetko IV, Villa AEP. A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns. J. Neurosci. Methods 2000; accompanying article), to data sets including up to 30 simultaneously recorded spike trains. The analysis of a large network of simulated neurons shows that the incidence of patterns cannot be simply related to an increase in firing rates obtained after Hebbian learning. Patterns that disappeared and reappeared in the thalamus of anesthetized rats when the cerebral cortex was reversibly inactivated suggest that widespread cell assemblies contribute to the generation and propagation of precisely timed activity. In an another experiment multiple spike trains were recorded from the temporal cortex of freely moving rats performing a complex two-choice discrimination task. The presence or absence of particular patterns in the period preceding the cue was associated with changes in reaction time. In conclusion, neuronal network interactions may generate spatiotemporal firing patterns detectable by PGA. We provide evidence of such patterned activity associated with specific animal's behavior, thus suggesting the existence of complex temporal coding schemes in the higher nervous centers of the brain.
منابع مشابه
Pii: S0165-0270(00)00336-8
The existence of precise temporal relations in sequences of spike intervals, referred to as ‘spatiotemporal patterns’, is suggested by brain theories that emphasize the role of temporal coding. Specific analytical methods able to assess the significance of such patterned activity are extremely important to establish its function for information processing in the brain. This study proposes a new...
متن کاملUnsupervised Spike Sorting of extracellular electrophysiological recording in subthalamic nucleus of Parkinsonian patients.
The present study demonstrates the application of the Unsupervised Spike Sorting algorithm (USS) to separation of multi-unit recordings and investigation of neuronal activity patterns in the subthalamic nucleus (STN). This nucleus is the main target for deep brain stimulation (DBS) in Parkinsonian patients. The USS comprises a fast unsupervised learning procedure and allows sorting of multiple ...
متن کاملTraining spiking neural networks to associate spatio-temporal input-output spike patterns
In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the applicati...
متن کاملDetecting synfire chain activity using massively parallel spike train recording.
The synfire chain model has been proposed as the substrate that underlies computational processes in the brain and has received extensive theoretical study. In this model cortical tissue is composed of a superposition of feedforward subnetworks (chains) each capable of transmitting packets of synchronized spikes with high reliability. Computations are then carried out by interactions of these c...
متن کاملDetecting Multineuronal Temporal Patterns in Parallel Spike Trains
We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 105 1 شماره
صفحات -
تاریخ انتشار 2001