Facial Recognition using Eigenfaces by PCA
نویسندگان
چکیده
Face recognition systems have been grabbing high attention from commercial market point of view as well as pattern recognition field. It also stands high in researchers community. Face recognition have been fast growing, challenging and interesting area in real-time applications. A large number of face recognition algorithms have been developed from decades. The present paper refers to different face recognition approaches and primarily focuses on principal component analysis, for the analysis and the implementation is done in free software, Scilab. This face recognition system detects the faces in a picture taken by web-cam or a digital camera, and these face images are then checked with training image dataset based on descriptive features. Descriptive features are used to characterize images. Scilab's SIVP toolbox is used for performing the image analysis. Keywords—eigenfaces, PCA, face recognition, image processing, person identification, face classification, Scilab, SIVP
منابع مشابه
Face Recognition Using Eigenfaces
In this paper we discuss some problem of Eigenfaces which is ignores in the previous work that is the question of which features are important for classification, and which are not. Eigenfaces seeks to answer this by using principal component analysis of the images of the faces. This analysis reduces the dimensionality of the training set, leaving only those features that are critical for face ...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFace Recognition Using Eigenface Approach*
In this article, a face recognition system using the Principal Component Analysis (PCA) algorithm was implemented. The algorithm is based on an eigenfaces approach which represents a PCA method in which a small set of significant features are used to describe the variation between face images. Experimental results for different numbers of eigenfaces are shown to verify the viability of the prop...
متن کاملFace Recognition Using LBP Eigenfaces
In this paper, we propose a simple and efficient face representation feature that adopts the eigenfaces of Local Binary Pattern (LBP) space, referred to as the LBP eigenfaces, for robust face recognition. In the proposed method, LBP eigenfaces are generated by first mapping the original image space to the LBP space and then projecting the LBP space to the LBP eigenface subspace by Principal Com...
متن کاملShape Invariant Recognition of Segmented Human Faces using Eigenfaces
This paper describes an efficient approach for face recognition as a two step process: 1) segmenting the face region from an image by using an appearance based model, 2) using eigenfaces for person identification for segmented face region. The efficiency lies not only in generation of appearance models which uses the explicit approach for shape and texture but also the combined use of the afore...
متن کاملGreedy Learning of Sparse Eigenfaces for Face Recognition and Tracking
Appearance-based subspace models such as eigenfaces have been widely recognized as one of the most successful approaches to face recognition and tracking. The success of eigenfaces mainly has its origins in the benefits offered by principal component analysis (PCA), the representational power of the underlying generative process for high-dimensional noisy facial image data. The sparse extension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009