The Simulation of Elastic Tissues in Virtual Medicine Using Neuro- Fuzzy Systems
نویسندگان
چکیده
To improve the benefit of surgical simulators for education and research a visual convincing modeling of the operation scenario and the involved tissues is not sufficient. It is also necessary to simulate the deformation and resulting inner forces of tissue under influence of external forces caused by, for example, medical instruments or gravity. In this paper, we present a hybrid neuro-fuzzy system, which was designed for the description and simulation of tissues. The neuro-fuzzy system can be used to simulate the physical behavior like stiffness, viscosity and inertia of deformable or elastic tissues in surgical simulation. The parameters of a physical model or prior expert knowledge in the form of linguistic terms can be used to initialize the network parameters. Using a neural network structure, local changes to the system like cuts or ruptures can be performed during simulation. As an application example, some simulation results in the area of gynaecological laparoscopy are given.
منابع مشابه
Elastodynamic Shape Modeling in Virtual Medicine
Surgical simulation is the coming training method for medical education. The main reasons for this are the reduced risk for the patients and the easy repeatability of complicated surgical procedures. Therefore, an improved impression of reality during the simulated training must be obtained. For this, a complex model of the human’s anatomy and physiology is needed. With regards to pathological ...
متن کاملReliability and Sensitivity Analysis of Structures Using Adaptive Neuro-Fuzzy Systems
In this study, an efficient method based on Monte Carlo simulation, utilized with Adaptive Neuro-Fuzzy Inference System (ANFIS) is introduced for reliability analysis of structures. Monte Carlo Simulation is capable of solving a broad range of reliability problems. However, the amount of computational efforts that may involve is a draw back of such methods. ANFIS is capable of approximating str...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998