Motor learning elicited by voluntary drive.
نویسندگان
چکیده
Motor training consisting of voluntary movements leads to performance improvements and results in characteristic reorganizational changes in the motor cortex. It has been proposed that repetition of passively elicited movements could also lead to improvements in motor performance. In this study, we compared behavioural gains, changes in functional MRI (fMRI) activation in the contralateral primary motor cortex (cM1) and in motor cortex excitability measured with transcranial magnetic stimulation (TMS) after a 30 min training period of either voluntarily (active) or passively (passive) induced wrist movements, when alertness and kinematic aspects of training were controlled. During active training, subjects were instructed to perform voluntary wrist flexion-extension movements of a specified duration (target window 174-186 ms) in an articulated splint. Passive training consisted of wrist flexion- extension movements elicited by a torque motor, of the same amplitude and duration range as in the active task. fMRI activation and TMS parameters of motor cortex excitability were measured before and after each training type. Motor performance, measured as the number of movements that hit the target window duration, was significantly better after active than after passive training. Both active and passive movements performed during fMRI measurements activated cM1. Active training led to more prominent increases in (i) fMRI activation of cM1; (ii) recruitment curves (TMS); and (iii) intracortical facilitation (TMS) than passive training. Therefore, a short period of active motor training is more effective than passive motor training in eliciting performance improvements and cortical reorganization. This result is consistent with the concept of a pivotal role for voluntary drive in motor learning and neurorehabilitation.
منابع مشابه
Role of voluntary drive in encoding an elementary motor memory.
Motor training consisting of repetitive thumb movements results in encoding of motor memories in the primary motor cortex. It is not known if proprioceptive input originating in the training movements is sufficient to produce this effect. In this study, we compared the ability of training consisting of voluntary (active) and passively-elicited (passive) movements to induce this form of plastici...
متن کاملEffects of Voluntary Exercise on Motor Function in Parkinson\'s disease Model of Rats
Background. Previous surveys have shown that motor deficits precede the classical motor symptoms seen in Parkinson’s disease (PD) and that physical exercise may have beneficial effects on PD. Objectives. Here, we evaluated the potential of voluntary exercise to improve motor deficit in experimentally-induced Parkinson’s disease (6-OHDA) rats. Methods. Forty adult Wistar rats were ...
متن کاملCorticospinal Facilitation of Erector Spinae and Rectus Abdominis Muscles During Graded Voluntary Contractions is Task Speci.c: A Pilot Study on Healthy Individuals
Introduction: In this study we compared transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) in a postural (bilateral low back extension: BLBE) and a respiratory (forced expiration during breath holding: FEBH) task.Methods: Using TMS of the left motor cortex, simultaneous patterns of corticospinal facilitation of the contralateral erector spinae (ES) and rectus abdomi...
متن کاملThe Primate Cerebellum Selectively Encodes Unexpected Self-Motion
BACKGROUND The ability to distinguish sensory signals that register unexpected events (exafference) from those generated by voluntary actions (reafference) during self-motion is essential for accurate perception and behavior. The cerebellum is most commonly considered in relation to its contributions to the fine tuning of motor commands and sensorimotor calibration required for motor learning. ...
متن کاملInappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function.
TO THE EDITOR: Enoka and Duchateau (2) correctly call for caution when interpreting voluntary surface electromyography (sEMG) in terms of neural drive. If voluntary sEMG signals recorded during nonfatiguing isometric contractions depend on the number of motor units recruited, their firing rate, and their size (5), modeling found no direct association between neural drive and voluntary sEMG ampl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 126 Pt 4 شماره
صفحات -
تاریخ انتشار 2003