Can we avoid tests for zero in fast elliptic-curve arithmetic?
نویسنده
چکیده
This paper analyzes the exact extent to which 0 and ∞ cause trouble in Montgomery’s fast branchless formulas for x-coordinate scalar multiplication on elliptic curves of the form by = x + ax + x. The analysis shows that some multiplications and branches can be eliminated from elliptic-curve primality proofs and from elliptic-curve cryptography.
منابع مشابه
Fast Implementation of Elliptic Curve Arithmetic in GF(pn)
Elliptic curve cryptosystems have attracted much attention in recent years and one of major interests in ECC is to develop fast algorithms for elliptic curve arithmetic. In this paper we present various improvement techniques for eld arithmetic in GF(p n)(p a prime), in particular , fast eld multiplication and inversion algorithms, and provide our implementation results on Pentium II and Alpha ...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملFast genus 2 arithmetic based on Theta functions
In 1986, D. V. Chudnovsky and G. V. Chudnovsky proposed to use formulae coming from Theta functions for the arithmetic in Jacobians of genus 2 curves. We follow this idea and derive fast formulae for the scalar multiplication in the Kummer surface associated to a genus 2 curve, using a Montgomery ladder. Our formulae can be used to design very efficient genus 2 cryptosystems that should be fast...
متن کاملOn hybrid SIDH schemes using Edwards and Montgomery curve arithmetic
Supersingular isogeny Diffie-Hellman (SIDH) is a proposal for a quantumresistant key exchange. The state-of-the-art implementation works entirely with Montgomery curves and basically can be divided into elliptic curve arithmetic and isogeny arithmetic. It is well known that twisted Edwards curves can provide a more efficient elliptic curve arithmetic. Therefore it was hinted by Costello and His...
متن کاملOptimal Extension Fields for Fast Arithmetic in Public-Key Algorithms
This contribution introduces a class of Galois eld used to achieve fast nite eld arithmetic which we call an Optimal Extension Field OEF This approach is well suited for implementation of public key cryptosystems based on elliptic and hyperelliptic curves Whereas previous reported optimizations focus on nite elds of the form GF p and GF m an OEF is the class of elds GF p for p a prime of specia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006