Lecture notes for “Analysis of Algorithms”: Maximum matching in general graphs

نویسنده

  • Uri Zwick
چکیده

We present Edmonds’ blossom shrinking algorithm for finding a maximum cardinality matching in a general graph. En route, we obtain an efficient algorithm for finding a minimum vertex cover in a bipartite graph and show that its size is equal to the size of the maximum matching in the graph. We also show that the size of a maximum matching in a general graph is equal to the size of a minimum odd cover of the graph. 1 The maximum matching problem Let G = (V, E) be an undirected graph. A set M ⊆ E is a matching if no two edges in M touch each other or, in other words, if the degree of every vertex in the subgraph (V,M) is at most 1. A vertex v is matched by M if there is an edge of M that touches v. Otherwise, v in unmatched. In the maximum matching problem we are asked to find a matching M in the graph G = (V, E) of maximum size. As we have seen, the maximum matching problem in bipartite graphs can be easily reduced to a maximum flow problem which could then be solved in O(m √ n) time. The maximum matching problem in general, not necessarily bipartite, graphs is more challenging. We present here a classical algorithm of Edmonds [Edm65] for solving the problem. 2 Alternating and augmenting paths If A and B are sets, we let A⊕B = (A−B)∪ (B−A) be their symmetric difference. The following lemma is obvious. ∗School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E–mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Level Boolean Minimization

mation and Management (AAIM), Portland, OR, USA, Lecture Notes in Computer Science, vol. 4508, pp. 399–410. Springer (2007) 12. Jiang, M.: A PTAS for the weighted 2-interval pattern problem over the preceding-and-crossing model. In: Y.X. A.W.M. Dress, B. Zhu (eds.) Proc. 1st Annual International Conference on Combinatorial Optimization and Applications (COCOA), Xi’an, China, Lecture Notes in Co...

متن کامل

Lectures 4 and 5 – Matchings

A matching in a graph is a set of edges, no two of which share an endpoint. We describe Edmond’s algorithm for finding matchings of maximum cardinality in a graph. For bipartite graphs with edge weights, we also show how to find matchings of maximum weight. It is recommended that the reader draws pictures of the various constructs that we use (such as alternating trees). I was too lazy to incor...

متن کامل

Lecture Notes for IEOR 266: The Pseudoflow Algorithm Graph Algorithms and Network Flows

3 Minimum cost network flow problem 5 3.1 Transportation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 The maximum flow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 The shortest path problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 The single source shortest paths . . . . . . . . . . . . . . . . ...

متن کامل

Lecture Notes for IEOR 266: Graph Algorithms and Network Flows

3 Minimum cost network flow problem 5 3.1 Transportation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 The maximum flow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 The shortest path problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 The single source shortest paths . . . . . . . . . . . . . . . . ...

متن کامل

Complexity issues in vertex-colored graph pattern matching

Searching for motifs in graphs has become a crucial problem in the analysis of biological networks. In the context of metabolic network analysis, Lacroix et al [V. Lacroix, C.G. Fernandes and M.-F. Sagot, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3 (2006), no. 4, 360368 ] introduced the NP-hard general problem of finding occurrences of motifs in vertexcolored graphs, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006