Social Computing for Collaborative Image Understanding

نویسندگان

  • Jianping Fan
  • William Ribarsky
  • Ramesh Jain
چکیده

With the advance of the Internet and the increasing accessibility of computing resources, humans and computer systems are now brought together in powerful new ways. In this paper, we propose a humancentered computing framework to harness the essential characteristics of both humans and computers for achieving collaborative image understanding (i.e., training large numbers of inter-related classifiers collaboratively for automatic object and concept detection from images), where groups of volunteers may collaborate on: (a) giving their timely guidances for supporting collaborative classifier training; (b) using their personal computing resources such as PCs for training large numbers of inter-related classifiers collaboratively; and (c) assessing the correctness of learning results (classifiers and their decision boundaries) and the effectiveness of hypotheses for classifier training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Social Commerce Determinants on Social Capital for Energy Sectors

This study investigates the constructs and related theories that drive social capital in energy sector from the intention perspectives. This research uses theories of ‘social support’ and ‘planned behaviour’ alongside satisfaction and perceived value to propose a research model that drives social capital for energy sectors in Malaysia. The model reveals that the Theories of Planned Behaviour (T...

متن کامل

Implementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey

Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...

متن کامل

Image Annotation in Presence of Noisy Labels

Labels associated with social images are valuable source of information for tasks of image annotation, understanding and retrieval. These labels are often found to be noisy, mainly due to the collaborative tagging activities of users. Existing methods on annotation have been developed and verified on noise free labels of images. In this paper, we propose a novel and generic framework that explo...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011