Formation of hydrogenated graphene nanoripples by strain engineering and directed surface self-assembly
نویسندگان
چکیده
We propose a class of semiconducting graphene-based nanostructures: hydrogenated graphene nanoripples (HGNRs), based on continuum-mechanics analysis and first-principles calculations. They are formed via a twostep combinatorial approach: first by strain-engineered pattern formation of graphene nanoripples, followed by a curvature-directed self-assembly of H adsorption. It offers a high level of control of the structure and morphology of the HGNRs, and hence of their band gaps, which share common features with graphene nanoribbons. A cycle of H adsorption (desorption) at (from) the same surface locations completes a reversible metal-semiconductor-metal transition with the same band gap.
منابع مشابه
Strain engineering of graphene: a review.
Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called "straintronics". In th...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملDevice-oriented graphene nanopatterning by mussel-inspired directed block copolymer self-assembly.
Directed self-assembly of a block copolymer is successfully employed to fabricate device-oriented graphene nanostructures from CVD grown graphene. We implemented mussel-inspired polydopamine adhesive in conjunction with the graphoepitaxy principle to tailor graphene nanoribbon arrays and a graphene nanomesh located between metal electrodes. Polydopamine adhesive was utilized for facile and dama...
متن کاملStep-edge self-assembly during graphene nucleation on a nickel surface: QM/MD simulations.
Quantum chemical molecular dynamics simulations of graphene nucleation on the Ni(111) surface show that graphene creates its own step-edge as it forms. This "step-edge self-assembly" is driven by the formation of thermodynamically favorable Ni-C σ-bonds at the graphene edge. This dynamic aspect of the Ni(111) catalyst is in contrast to the commonly accepted view that graphene nucleates on a pre...
متن کاملTuning electronic and magnetic properties of partially hydrogenated graphene by biaxial tensile strain: a computational study
Using density functional theory calculations, we have investigated the effects of biaxial tensile strain on the electronic and magnetic properties of partially hydrogenated graphene (PHG) structures. Our study demonstrates that PHG configuration with hexagon vacancies is more energetically favorable than several other types of PHG configurations. In addition, an appropriate biaxial tensile stra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011