Outlier Removal for Motion Tracking by Subspace Separation
نویسندگان
چکیده
Many feature tracking algorithms have been proposed for motion segmentation, but the resulting trajectories are not necessarily correct. In this paper, we propose a technique for removing outliers based on the knowledge that correct trajectories are constrained to be in a subspace of their domain. We first fit an appropriate subspace to the detected trajectories using RANSAC and then remove outliers by considering the error behavior of actual video tracking. Using real video sequences, we demonstrate that our method can be applied if multiple motions exist in the scene. We also confirm that the separation accuracy is indeed improved by our method. key words: feature tracking, outlier removal, subspace separation, robust estimation, RANSAC
منابع مشابه
Shifted Subspaces Tracking on Sparse Outlier for Motion Segmentation
In low-rank & sparse matrix decomposition, the entries of the sparse part are often assumed to be i.i.d. sampled from a random distribution. But the structure of sparse part, as the central interest of many problems, has been rarely studied. One motivating problem is tracking multiple sparse object flows (motions) in video. We introduce “shifted subspaces tracking (SST)” to segment the motions ...
متن کاملNearly Optimal Robust Subspace Tracking and Dynamic Robust PCA
In this work, we study the robust subspace tracking (RST) problem and obtain one of the first two provable guarantees for it. The goal of RST is to track sequentially arriving data vectors that lie in a slowly changing low-dimensional subspace, while being robust to corruption by additive sparse outliers. It can also be interpreted as a dynamic (time-varying) extension of robust PCA (RPCA), wit...
متن کامل3-D Camera Motion Estimation and Foreground / Background Separation for Stereoscopic Image Sequences
The present paper examines the problem of foreground/background extraction when stereoscopic image information is available. A two-stage algorithm is proposed, followed by post processing for the estimation of the global motion in the scene and the identi cation of moving objects. At the rst stage an estimate of the 2-D global motion in the scene is formed which serves then as an initial estima...
متن کاملRobust PCA and Robust Subspace Tracking
Principal Components Analysis (PCA) is one of the most widely used dimension reduction techniques. Given a matrix of clean data, PCA is easily accomplished via singular value decomposition (SVD) on the data matrix. While PCA for relatively clean data is an easy and solved problem, it becomes much harder if the data is corrupted by even a few outliers. The reason is that SVD is sensitive to outl...
متن کاملA subspace approach to layer extraction, patch-based SFM, and video compression
Representing videos with layers has important applications such as video compression, motion analysis, 3D modeling and rendering. This thesis proposes a subspace approach to extracting layers from video by taking advantages of the fact that homographies induced by planar patches in the scene form a low dimensional linear subspace. In the subspace, layers in the input images are mapped onto well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002