Approaching Sentiment Analysis by using semi-supervised learning of multi-dimensional classifiers
نویسندگان
چکیده
Sentiment Analysis is defined as the computational study of opinions, sentiments and emotions expressed in text. Within this broad field, most of the work has been focused on either Sentiment Polarity classification, where a text is classified as having positive or negative sentiment, or Subjectivity classification, in which a text is classified as being subjective or objective. However, in this paper, we consider instead a real-world problem in which the attitude of the author is characterised by three different (but related) target variables: Subjectivity, Sentiment Polarity, Will to Influence, unlike the two previously stated problems, where there is only a single variable to be predicted. For that reason, the (uni-dimensional) common approaches used in this area yield to suboptimal solutions to this problem. Somewhat similar happens with multi-label learning techniques which cannot directly tackle this problem. In order to bridge this gap, we propose, for the first time, the use of the novel multidimensional classification paradigm in the Sentiment Analysis domain. This methodology is able to join the different target variables in the same classification task so as to take advantage of the potential statistical relations between them. In addition, and in order to take advantage of the huge amount of unlabelled information available nowadays in this context, we propose the extension of the multidimensional classification framework to the semi-supervised domain. Experimental results for this problem show that our semi-supervised multi-dimensional approach outperforms the most common Sentiment Analysis approaches, concluding that our approach is beneficial to improve the recognition rates for this problem, and in extension, could be considered to solve future Sentiment Analysis
منابع مشابه
Semi-supervised Sentiment Classification using Ranked Opinion Words
This work proposes a semi-supervised sentiment classification method which is based on the co-training framework. The proposed method needs to construct three sentiment classifiers. We use common text features to construct the first classifier. We extract opinion words from consumer reviews, and then we ranked these opinion words according to their importance. We also employ extracted opinion w...
متن کاملCustomizing Sentiment Classifiers to New Domains: a Case Study
Sentiment classification is a very domainspecific problem; classifiers trained in one domain do not perform well in others. Unfortunately, many domains are lacking in large amounts of labeled data for fully-supervised learning approaches. At the same time, sentiment classifiers need to be customizable to new domains in order to be useful in practice. We attempt to address these difficulties and...
متن کاملIncremental Learning on Sentiment Analysis Using Weakly Supervised Learning Techniques
Due to the advanced technologies of Web 2.0, people are participating in and exchanging opinions through social media sites such as Web forums and Weblogs etc., Classification and Analysis of such opinions and sentiment information is potentially important for both service and product providers, users because this analysis is used for making valuable decisions. Sentiment is expressed differentl...
متن کاملA New Approach for Measuring Sentiment Orientation based on Multi-Dimensional Vector Space
This study implements a vector space model approach to measure the sentiment orientations of words. Two representative vectors for positive/negative polarity are constructed using high-dimensional vector space in both an unsupervised and a semisupervised manner. A sentiment orientation value per word is determined by taking the difference between the cosine distances against the two reference v...
متن کاملMinimally-supervised methods for Arabic Named Entity Recognition
Supervised methods can achieve high performance on NLP tasks, such as Named Entity Recognition (NER), but new annotations are required for every new domain and/or genre change. This has motivated research in minimally supervised methods such as semisupervised learning and distant learning, but neither technique has yet achieved performance levels comparable to those of supervised methods. Semi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 92 شماره
صفحات -
تاریخ انتشار 2012