Source Unfoldings of Convex Polyhedra via Certain Closed Curves

نویسندگان

  • Jin-ichi Itoh
  • Joseph O'Rourke
  • Costin Vîlcu
چکیده

We extend the notion of a source unfolding of a convex polyhedron P to be based on a closed polygonal curve Q in a particular class rather than based on a point. The class requires that Q “lives on a cone” to both sides; it includes simple, closed quasigeodesics. Cutting a particular subset of the cut locus of Q (in P) leads to a non-overlapping unfolding of the polyhedron. This gives a new general method to unfold the surface of any convex polyhedron to a simple, planar polygon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Curves on Polyhedra via Conical Existence

We establish that certain classes of simple, closed, polygonal curves on the surface of a convex polyhedron develop in the plane without overlap. Our primary proof technique shows that such curves “live on a cone,” and then develops the curves by cutting the cone along a “generator” and flattening the cone in the plane. The conical existence results support a type of source unfolding of the sur...

متن کامل

Local Overlaps In Special Unfoldings Of Convex Polyhedra

We define a notion of local overlaps in polyhedron unfoldings. We use this concept to construct convex polyhedra for which certain classes of edge unfoldings contain overlaps, thereby negatively resolving some open conjectures. In particular, we construct a convex polyhedron for which every shortest path unfolding contains an overlap. We also present a convex polyhedron for which every steepest...

متن کامل

A Class of Convex Polyhedra with Few Edge Unfoldings

We construct a sequence of convex polyhedra on n vertices with the property that, as n→∞, the fraction of its edge unfoldings that avoid overlap approaches 0, and so the fraction that overlap approaches 1. Nevertheless, each does have (several) nonoverlapping edge unfoldings.

متن کامل

Spiral Unfoldings of Convex Polyhedra

The notion of a spiral unfolding of a convex polyhedron, resulting by flattening a special type of Hamiltonian cut-path, is explored. The Platonic and Archimedian solids all have nonoverlapping spiral unfoldings, although among generic polyhedra, overlap is more the rule than the exception. The structure of spiral unfoldings is investigated, primarily by analyzing one particular class, the poly...

متن کامل

A Generalization of the Source Unfolding of Convex Polyhedra

We present a new method for unfolding a convex polyhedron into one piece without overlap, based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method of Itoh, O’Rourke, and Vı̂lcu.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1205.0963  شماره 

صفحات  -

تاریخ انتشار 2011