Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata
نویسندگان
چکیده
BACKGROUND Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the only product generated by S. ovata during autotrophic growth. RESULTS In this study, trace elements in S. ovata growth medium were optimized to improve MES and gas fermentation productivity. Augmenting tungstate concentration resulted in a 2.9-fold increase in ethanol production by S. ovata during H2:CO2-dependent growth. It also promoted electrosynthesis of ethanol in a S. ovata-driven MES reactor and increased acetate production 4.4-fold compared to unmodified medium. Furthermore, fatty acids propionate and butyrate were successfully converted to their corresponding alcohols 1-propanol and 1-butanol by S. ovata during gas fermentation. Increasing tungstate concentration enhanced conversion efficiency for both propionate and butyrate. Gene expression analysis suggested that tungsten-containing aldehyde ferredoxin oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. CONCLUSIONS This study presented here shows that optimization of microbial catalyst growth medium can improve productivity and lead to the biosynthesis of different products by gas fermentation and MES. It also provides insights on the metabolism of biofuels production in acetogens and demonstrates that S. ovata has an important untapped metabolic potential for the production of other chemicals than acetate via CO2-converting bioprocesses including MES.
منابع مشابه
First Insights into the Genome of the Gram-Negative, Endospore-Forming Organism Sporomusa ovata Strain H1 DSM 2662
The genome of Sporomusa ovata strain H1 DSM 2662, an anaerobic, Gram-negative endospore-forming bacterium, was sequenced. S. ovata uses N-methyl compounds, primary alcohols, fatty acids, and H2 and CO2 as energy and carbon sources to produce acetate. The genome harbors one chromosome, which encodes proteins typical for sporulation.
متن کاملEffect of Organic Substrate on Promoting Solventogenesis in Ethanologenic Acetogene Clostridium ljungdahlii ATCC5538
Clostridium ljungdahlii is a strictly anaerobic acetogene known for its ability to ferment a wide variety of substrates to ethanol and acetate. This bacterium presents a complex anaerobic metabolism including the acetogenic and solventogenic phases. In this study, the effect of various carbon sources on triggering the metabolic shift toward solventogenesis was considered. The bacterium was grow...
متن کاملGrowth inhibition of Sporomusa ovata by incorporation of benzimidazole bases into cobamides.
Phenolyl cobamides are unique members of a class of cobalt-containing cofactors that includes vitamin B12 (cobalamin). Cobamide cofactors facilitate diverse reactions in prokaryotes and eukaryotes. Phenolyl cobamides are structurally and chemically distinct from the more commonly used benzimidazolyl cobamides such as cobalamin, as the lower axial ligand is a phenolic group rather than a benzimi...
متن کاملMicrobial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds
The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appe...
متن کاملSporomusa intestinalis sp. nov., a homoacetogenic bacterium isolated from the gut of a higher termite, Termes comis (Termitinae).
The genus Sporomusa belongs phylogenetically to the family Vellionellaceae of the phylum Firmicutes. The members of this genus are known to be anaerobic or aerotolerant, homoacetogenic bacteria which grow autotrophically on H2/CO2 or heterotrophically on various substrates such as sugars, alcohols, amino acids, and organic acids. To date, the genus Sporomusa comprises nine species: Sporomusa ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016