Jensen’s Inequality for Quasiconvex Functions

نویسندگان

  • S. S. DRAGOMIR
  • E. M. PEARCE
چکیده

This class of functions strictly contains the class of convex functions defined on a convex set in a real linear space. See [8] and citations therein for an overview of this issue. Some recent studies have shown that quasiconvex functions have quite close resemblances to convex functions – see, for example, [4], [6], [7], [10] for quasiconvex and even more general extensions of convex functions in the context of Hadamard’s pair of inequalities. Apart from generalizations to theory, weakening the convexity condition can increase applicability. Thus in [9] use is made of quasiconvexity to obtain a global extremum with rather less effort than via convexity. In this article we pursue the concept further and derive a number of Jensen–type inequalities for quasiconvex functions. See also [5] for functions of Godunova–Levin type in the context of Jensen’s inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some  inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

On Vector-valued Hardy Martingales and a Generalized Jensen’s Inequality

We establish a generalized Jensen’s inequality for analytic vector-valued functions on TN using a monotonicity property of vector-valued Hardy martingales. We then discuss how this result extends to functions on a compact abelian group G, which are analytic with respect to an order on the dual group. We also give a generalization of Helson and Lowdenslager’s version of Jensen’s inequality to ce...

متن کامل

Jensen’s Operator Inequality for Strongly Convex Functions

We give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve Hölder-McCarthy inequality under suitable conditions. More precisely we show that if Sp (A) ⊂ I ⊆ (1,∞), then 〈Ax, x〉 r ≤ 〈Ax, x〉 − r − r 2 (

متن کامل

A REFINEMENT OF JENSEN’S INEQUALITY WITH APPLICATIONS FOR f-DIVERGENCE MEASURES

A refinement of the discrete Jensen’s inequality for convex functions defined on a convex subset in linear spaces is given. Application for f -divergence measures including the Kullback-Leibler and Jeffreys divergences are provided as well.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008