Infinite Labeled Trees: from Rational to Sturiman Trees

نویسندگان

  • Nicolas Gast
  • Bruno Gaujal
چکیده

This paper studies infinite unordered d-ary trees with nodes labeled by {0, 1}. We introduce the notions of rational and Sturmian trees along with the definitions of (strongly) balanced trees and mechanical trees, and study the relations among them. In particular, we show that (strongly) balanced trees exist and coincide with mechanical trees in the irrational case, providing an effective construction. Such trees also have a minimal factor complexity, hence are Sturmian. We also give several examples illustrating the inclusion relations between these classes of trees. Key-words: Infinite Trees, Sturmian words, Sturmian trees in ria -0 03 18 87 2, v er si on 2 26 M ay 2 00 9 Arbre Infinis Étiquettés: des Arbres Rationels aux Arbres Sturmiens Résumé : Ce rapport présente une étude des arbres infinis de degré d dont les noeuds sont étiquetés par {0, 1}. Nous introduisons les notions d’arbres rationnels et sturmiens ainsi que les définitions d’arbre (fortement) balancés et d’arbres mécaniques, puis nous étudions les relations entre ces différentes définitions. En particulier, nous montrons l’existence des arbres fortement balancés. Dans le cas irrationnel, cette définition est équivalent à celle des arbres mécaniques, qui en fourni donc une définition constructive. Nous montrons aussi que ces arbres sont de complexité minimale et donc Sturmiens. De nombreux exemples et contre-exemples sont présentés afin d’illustrer les différentes classes définies. Mots-clés : Arbres infinis, mots sturmiens, arbres sturmiens in ria -0 03 18 87 2, v er si on 2 26 M ay 2 00 9 Infinite Labeled Trees: from Rational to Sturiman Trees 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite labeled trees: From rational to Sturmian trees

This paper studies infinite unordered d-ary trees with nodes labeled by {0, 1}. We introduce the notions of rational and Sturmian trees along with the definitions of (strongly) balanced trees and mechanical trees, and study the relations among them. In particular, we show that (strongly) balanced trees exist and coincide with mechanical trees in the irrational case, providing an effective const...

متن کامل

A Complete Axiomatization of Strict Equality over Infinite Trees (Extended Version) Technical Report SIC-03-2009, UCM

Computing with data values that are some kind of trees — finite, infinite, rational— is at the core of declarative programming, either logic, functional or functional-logic. Understanding the logic of trees is therefore a fundamental question with impact in different aspects, like language design, including constraint systems or constructive negation, or obtaining methods for verifying and reas...

متن کامل

Finite-Tree Analysis for Constraint Logic-Based Languages

Logic languages based on the theory of rational, possibly infinite, trees have much appeal in that rational trees allow for faster unification (due to the omission of the occurs-check) and increased expressivity. Note that cyclic terms can provide a very efficient representation of grammars and other useful objects. Unfortunately, the use of infinite rational trees has problems. For instance, m...

متن کامل

An Application of Rational Trees in a Logic Programming Interpreter for a Procedural Language

We describe here a simple application of rational trees to the implementation of an interpreter for a procedural language written in a logic programming language. This is possible in languages designed to support rational trees (such as Prolog II and its descendants), but also in traditional Prolog, whose data structures are initially based on Herbrand terms, but in which implementations often ...

متن کامل

Limit distribution of the degrees in scaled attachment random recursive trees

We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009