A role for inducible 6-phosphofructo-2-kinase in the control of neuronal glycolysis.

نویسندگان

  • Honggui Li
  • Xin Guo
  • Hang Xu
  • Shih-Lung Woo
  • Vera Halim
  • Caurnel Morgan
  • Chaodong Wu
چکیده

Increased glycolysis is the result of the sensing of glucose by hypothalamic neurons. The biochemical mechanisms underlying the control of hypothalamic glycolysis, however, remain to be elucidated. Here we showed that PFKFB3, the gene that encodes for inducible 6-phosphofructo-2-kinase (iPFK2), was expressed at high abundance in both mouse hypothalami and clonal hypothalamic neurons. In response to re-feeding, PFKFB3 mRNA levels were increased by 10-fold in mouse hypothalami. In the hypothalamus, re-feeding also decreased the phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and the mRNA levels of agouti-related protein (AgRP), and increased the mRNA levels of cocaine-amphetamine-related transcript (CART). Similar results were observed in N-43/5 clonal hypothalamic neurons upon treatment with glucose and/or insulin. In addition, knockdown of PFKFB3/iPFK2 in N-43/5 neurons caused a decrease in rates of glycolysis, which was accompanied by increased AMPK phosphorylation, increased AgRP mRNA levels and decreased CART mRNA levels. In contrast, overexpression of PFKFB3/iPFK2 in N-43/5 neurons caused an increase in glycolysis, which was accompanied by decreased AMPK phosphorylation and decreased AgRP mRNA levels and increased CART mRNA levels. Together, these results suggest that PFKFB3/iPFK2 responds to re-feeding, which in turn stimulates hypothalamic glycolysis and decreases hypothalamic AMPK phosphorylation and alters neuropeptide expression in a pattern that is associated with suppression of food intake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect.

Cancer cells maintain a high glycolytic rate even in the presence of oxygen, a phenomenon first described over 70 years ago and known historically as the Warburg effect. Fructose 2,6-bisphosphate is a powerful allosteric regulator of glycolysis that acts to stimulate the activity of 6-phosphofructo-1-kinase (PFK-1), the most important control point in mammalian glycolysis. The steady state conc...

متن کامل

Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation.

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate (F2,6BP), which is a powerful activator of 6-phosphofructo-1-kinase, the rate-limiting enzyme of glycolysis. Four genes encode PFK-2/FBPase (PFKFB1-4), and an inducible isoform (iPFK-2/PFKFB3) has been found to mediate F2,6BP production in proliferating cells....

متن کامل

Role of fructose 2,6-bisphosphate in the control of heart glycolysis.

The aim of this work was to study whether changes in fructose 2,6-bisphosphate concentration are correlated with variations of the glycolytic flux in the isolated working rat heart. Glycolysis was stimulated to different extents by increasing the concentration of glucose, increasing the workload, or by the addition of insulin. The glycolytic flux was measured by the rate of detritiation of [2-3...

متن کامل

HIF-1α and PFKFB3 Mediate a Tight Relationship Between Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic Macrophages.

OBJECTIVE Although it is accepted that macrophage glycolysis is upregulated under hypoxic conditions, it is not known whether this is linked to a similar increase in macrophage proinflammatory activation and whether specific energy demands regulate cell viability in the atheromatous plaque. APPROACH AND RESULTS We studied the interplay between macrophage energy metabolism, polarization, and v...

متن کامل

Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart.

In normoxic conditions, myocardial glucose utilization is inhibited when alternative oxidizable substrates are available. In this work we show that this inhibition is relieved in the presence of cAMP, and we studied the mechanism of this effect. Working rat hearts were perfused with 5.5 mM glucose alone (controls) or together with 5 mM lactate, 5 mM beta-hydroxybutyrate, or 1 mM palmitate. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of nutritional biochemistry

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2013