HADDOCK: a protein-protein docking approach based on biochemical or biophysical information.
نویسندگان
چکیده
The structure determination of protein-protein complexes is a rather tedious and lengthy process, by both NMR and X-ray crystallography. Several methods based on docking to study protein complexes have also been well developed over the past few years. Most of these approaches are not driven by experimental data but are based on a combination of energetics and shape complementarity. Here, we present an approach called HADDOCK (High Ambiguity Driven protein-protein Docking) that makes use of biochemical and/or biophysical interaction data such as chemical shift perturbation data resulting from NMR titration experiments or mutagenesis data. This information is introduced as Ambiguous Interaction Restraints (AIRs) to drive the docking process. An AIR is defined as an ambiguous distance between all residues shown to be involved in the interaction. The accuracy of our approach is demonstrated with three molecular complexes. For two of these complexes, for which both the complex and the free protein structures have been solved, NMR titration data were available. Mutagenesis data were used in the last example. In all cases, the best structures generated by HADDOCK, that is, the structures with the lowest intermolecular energies, were the closest to the published structure of the respective complexes (within 2.0 A backbone RMSD).
منابع مشابه
Data-driven docking: HADDOCK's adventures in CAPRI.
We have shown previously that given high-resolution structures of the unbound molecules, structure determination of protein complexes is possible by including biochemical and/or biophysical data as highly ambiguous distance restraints in a docking approach. We applied this method, implemented in the HADDOCK (High Ambiguity Driven DOCKing) package (Dominguez et al., J Am Chem Soc 2003;125:1731-1...
متن کاملHADDOCK2P2I: A Biophysical Model for Predicting the Binding Affinity of Protein–Protein Interaction Inhibitors
The HADDOCK score, a scoring function for both protein-protein and protein-nucleic acid modeling, has been successful in selecting near-native docking poses in a variety of cases, including those of the CAPRI blind prediction experiment. However, it has yet to be optimized for small molecules, and in particular inhibitors of protein-protein interactions, that constitute an "unmined gold reserve...
متن کاملTemplate-based protein–protein docking exploiting pairwise interfacial residue restraints
Although many advanced and sophisticated ab initio approaches for modeling protein-protein complexes have been proposed in past decades, template-based modeling (TBM) remains the most accurate and widely used approach, given a reliable template is available. However, there are many different ways to exploit template information in the modeling process. Here, we systematically evaluate and bench...
متن کاملCritical Assessment of Scoring Schemes for Protein-Protein Docking Predictions
Protein-protein interactions (PPI) play a crucial role in many biological processes such as cell signalling, transcription, translation, replication, signal transduction, and drug targeting, etc. Structural information about protein-protein interaction is essential for understanding the molecular mechanisms of these processes. Structures of protein-protein complexes are still difficult to obtai...
متن کاملSolvated docking: introducing water into the modelling of biomolecular complexes
MOTIVATION Interfacial water, which plays an important role in mediating biomolecular interactions, has been neglected in the modelling of biomolecular complexes. METHODS We present a solvated docking approach that explicitly accounts for the presence of water in protein-protein complexes. Our solvated docking protocol is based on the concept of the first encounter complex in which a water la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 125 7 شماره
صفحات -
تاریخ انتشار 2003