Wind speed measurement using forward scattered GPS signals

نویسندگان

  • James L. Garrison
  • Attila Komjathy
  • Valery U. Zavorotny
  • Stephen J. Katzberg
چکیده

Instrumentation and retrieval algorithms are described which use the forward scattered range-coded signals from the global positioning system (GPS) radio navigation system for the measurement of sea surface roughness. This roughness has long been known to be dependent upon the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track and over experimental surface truth buoys. These flights used a receiver capable of recording the cross-correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models, which employ a geometric optics approach. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering of GPS signals from the ocean with wind remote sensing application

A theoretical model that describes the power of a scattered Global Positioning System (GPS) signal as a function of geometrical and environmental parameters has been developed. This model is based on a bistatic radar equation derived using the geometric optics limit of the Kirchhoff approximation. The waveform (i.e., the time-delayed power obtained in the delay-mapping technique) depends on a w...

متن کامل

On the influence of ocean waves on simulated GNSS-R delay-doppler maps

Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and...

متن کامل

Calibration of reflected GPS for tropical storm wind speed retrievals

[1] Since 1996 when GPS reflected signals were purposefully acquired, an effort to assess the utility of these signals has been under way. It was early determined that the reflected GPS signal can be related to ocean surface wind dependent slope probability densities. Quantifying that relationship has resulted in considerable data taken at wind speeds below those associated with tropical storms...

متن کامل

GPS Signal Scattering from Sea Surface: Wind Speed Retrieval Using Experimental Data and Theoretical Model

Global Positioning System (GPS) signals reflected from applications. Recently, the sensitivity of this signal to the ocean surface have potential use for various remote propagation effects was found to be useful for various sensing purposes. Some possibilities are measurements of environmental remote sensing techniques. For example, surface roughness characteristics from which wave ionospheric ...

متن کامل

Description of a Bistatic System for Ocean Altimetry Using the GPS Signal

This paper presents the fundamental characteristics of bistatic altimetry performed using the Global Positioning System (GPS) signal scattered off the ocean surface and collected by a receiver in space. The advantage of the dense and rapid surface coverage afforded by the existing GPS constellation would enable new oceanographic applications such as eddy monitoring and the tracking of fast baro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002