Pseudo-Hermiticity, PT-symmetry, and the Metric Operator ∗
نویسنده
چکیده
The main achievements of Pseudo-Hermitian Quantum Mechanics and its distinction with the indefinite-metric quantum theories are reviewed. The issue of the non-uniqueness of the metric operator and its consequences for defining the observables are discussed. A systematic perturbative expression for the most general metric operator is offered and its application for a toy model is outlined.
منابع مشابه
Exact PT-Symmetry Is Equivalent to Hermiticity
We show that a quantum system possessing an exact antilinear symmetry, in particular PT -symmetry, is equivalent to a quantum system having a Hermitian Hamiltonian. We construct the unitary operator relating an arbitrary non-Hermitian Hamiltonian with exact PT -symmetry to a Hermitian Hamiltonian. We apply our general results to PT symmetry in finite-dimensions and give the explicit form of the...
متن کاملQT -Symmetry and Weak Pseudo-Hermiticity
For an invertible (bounded) linear operator Q acting in a Hilbert space H, we consider the consequences of the QT -symmetry of a non-Hermitian Hamiltonian H : H → H where T is the time-reversal operator. If H is symmetric in the sense that THT = H, then QT symmetry is equivalent toQ-weak-pseudo-Hermiticity. But in general this equivalence does not hold. We show this using some specific examples...
متن کاملKrein-Space Formulation of PT -Symmetry, CPT -Inner Products, and Pseudo-Hermiticity
Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schrödinger equation, we comment on some conceptual issues arising in the formulation of PT -symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide...
متن کاملPseudo-Hermiticity versus PT Symmetry: The structure responsible for the reality of the spectrum of a non-Hermitian Hamiltonian
We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the PT -symmetric non-Hermitian Hamiltonians studied in the literature are pseudo-Hermitian and argue that the structure responsible for the reality of the spectrum of these Hamiltonian is their pseudo-Hermiticity not PT -symmetry. We explore the basic pr...
متن کاملPseudo-Hermiticity versus PT Symmetry III: Equivalence of pseudo-Hermiticity and the presence of anti-linear symmetries
We show that a (non-Hermitian) Hamiltonian H admitting a complete biorthonormal set of eigenvectors is pseudo-Hermitian if and only if it has an anti-linear symmetry, i.e., a symmetry generated by an anti-linear operator. This implies that the eigenvalues of H are real or come in complex conjugate pairs if and only if H possesses such a symmetry. In particular, the reality of the spectrum of H ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005