Tribological properties of films formed by the reaction of carbon tetrachloride with iron
نویسندگان
چکیده
The tribological properties of halide films grown on iron by reaction with carbon tetrachloride vapor at a temperature of 617 K and a pressure of 1.7 Torr are compared, in ultrahigh vacuum, with FeCl2 films evaporated onto the surface. It is found that the reactively formed film has a slightly lower limiting friction coefficient than the evaporated layer ( 0.06 compared to 0.08), which may be due either to the diffusion of some carbon into the substrate or the formation of a more oriented layer when this is formed reactively. The major difference between the reactively grown and evaporated film is that the evaporated layer attains the minimum friction when 40 Å of FeCl2 has been evaporated, while the reactively formed layer has a minimum friction coefficient when a film of 6±2 Å has been deposited. In the case of the evaporated FeCl2 film, the growth of second and subsequent layers proceeds before the first layer is complete. It has been shown that the friction coefficient reaches its minimum value after completion of the first monolayer, a process that is complete after the evaporation of 40 Å of FeCl2. In the case of the film formed by reaction with CCl4, the halide film grows directly on the surface implying that the FeCl2 monolayer thickness is 6 Å. This value is in good agreement with the layer thickness in bulk ferrous chloride.
منابع مشابه
The surface and tribological chemistry of carbon tetrachloride on iron
The thermal decomposition of carbon tetrachloride on clean iron was studied in ultrahigh vacuum using molecular beam strategies, where it is found that carbon tetrachloride thermally decomposes on the surface to deposit iron and carbon with exactly identical kinetics as found at high pressures. No gas-phase products are detected and the activation energy for the reaction (14.2 ± 0.5 kcal/mol) i...
متن کاملEffect of Substrate Bias Voltage and Ti Doping on the Tribological Properties of DC Magnetron Sputtered MoSx Coatings
Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using...
متن کاملA molecular-beam study of the tribological chemistry of carbon tetrachloride on oxygen-covered iron
Dc molecular-beam methods are used to examine the reactivity of carbon tetrachloride with oxide films grown on iron in ultrahigh vacuum. The incident CCl4 beam flux is sufficiently low that the nature of the surface oxide is dictated by the annealing temperature allowing the reactivity of Fe2O3, Fe3O4 and FeO films to be examined. Carbon tetrachloride reacts rapidly with Fe2O3 and reaction with...
متن کاملStructural characteristics and tribological properties of TiAlCr(Si)CN nanocomposite films coated on the SPK 1.2080 tool steel using PVD technique
In the present work, structural characteristics and tribological properties of the Ti-Al-Cr-(Si)-C-N nanocomposite films coated on the SPK 1.2080 tool steel byPVD technique have been investigated. The PVD coating process was carried out using Ti (Si) Al and CrAl cathodes at 150 A current, 40 V bias and (Ar)0.1(CH4)0.45(N2)0.45 gas mixture for 50 min. Evaluations were conducted by OM, FESEM, AFM...
متن کاملA Study of the Tribological Properties of Sputter-deposited MoSX/Cr Coatings
In this investigation, MoSx/Cr coatings were deposited by direct-current magnetron sputter onto Ck45 (AISI 1045) plain carbon steel substrates. The MoSx/Cr ratio in the coatings was controlled by sputtering the composite targets. The chemical characterization was performed using EDX (energy dispersive X-ray analysis); the structural characterization was accomplished by X-ray diffraction (XRD) s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005