The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury.
نویسندگان
چکیده
The neuronal apoptosis inhibitory protein (NAIP) is a member of a novel family of inhibitor of apoptosis (IAP) proteins. The IAP genes are highly conserved from baculovirus to metazoans and suppress apoptosis induced by a variety of triggers both in vitro and in vivo. Here we describe the generation and characterization of mice with the targeted deletion of NAIP1. We demonstrate that the NAIP1-deleted mice develop normally. However, the survival of pyramidal neurons in the hippocampus after kainic acid-induced limbic seizures is greatly reduced in the NAIP1 knock-out animals. Thus, although NAIP1 is not necessary for normal development of murine central nervous system, the endogenous NAIP1 is required for neuronal survival in pathological conditions.
منابع مشابه
Change of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Objective(s): Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage.Materials and Methods:</...
متن کاملEffects of Usnic Acid on Apoptosis and Expression of Bax and Bcl-2 Proteins in Hippocampal CA1 Neurons Following Cerebral Ischemia-Reperfusion
Introduction: Cerebral ischemia-reperfusion causes complex pathological mechanisms that lead to tissue damage, such as neuronal apoptosis. Usnic acid is a secondary metabolite of lichen and has various biological properties including antioxidant and anti-inflammatory activities. This study aimed to investigate the neuroprotective effects of usnic acid on apoptotic cell death and apoptotic-relat...
متن کاملDifferential regulation of apoptosis-related genes in resistant and vulnerable subfields of the rat epileptic hippocampus.
Animals exposed to kainic acid (KA) induced status epilepticus display a striking pattern of selective neuronal vulnerability in the hippocampus. Neurons in the hilus/CA3 and CA1 subfields appear particularly sensitive whereas dentate gyrus (DG) granule cells are resistant. The molecular basis for this differential susceptibility remains largely unknown. Recently, an involvement of nitric oxide...
متن کاملMutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid b-peptide (1–42), H2O2 and kainic acid: implications for Alzheimer’s disease
Oxidative stress is observed in Alzheimer’s disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Ab). This 42-mer peptide is derived from the b-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which in...
متن کاملApoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms.
Mitochondria release proteins that propagate both caspase-dependent and caspase-independent cell death pathways. AIF (apoptosis-inducing factor) is an important caspase-independent death regulator in multiple neuronal injury pathways. Presently, there is considerable controversy as to whether AIF is neuroprotective or proapoptotic in neuronal injury, such as oxidative stress or excitotoxicity. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2000