TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage.

نویسندگان

  • Wenyi Zhang
  • Iwona Hirschler-Laszkiewicz
  • Qin Tong
  • Kathleen Conrad
  • Shao-Cong Sun
  • Linda Penn
  • Dwayne L Barber
  • Richard Stahl
  • David J Carey
  • Joseph Y Cheung
  • Barbara A Miller
چکیده

TRPM2 is a Ca(2+)-permeable channel activated by oxidative stress or TNF-alpha, and TRPM2 activation confers susceptibility to cell death. The mechanisms were examined here in human monocytic U937-ecoR cells. This cell line expresses full-length TRPM2 (TRPM2-L) and several isoforms including a short splice variant lacking the Ca(2+)-permeable pore region (TRPM2-S), which functions as a dominant negative. Treatment with H(2)O(2), a model of oxidative stress, or TNF-alpha results in reduced cell viability. Expression of TRPM2-L and TRPM2-S was modulated by retroviral infection. U937-ecoR cells expressing increased levels of TRPM2-L were treated with H(2)O(2) or TNF-alpha, and these cells exhibited significantly increased intracellular calcium concentration ([Ca(2+)](i)), decreased viability, and increased apoptosis. A dramatic increase in cleavage of caspases-8, -9, -3, and -7 and poly(ADP-ribose)polymerase (PARP) was observed, demonstrating a downstream mechanism through which cell death is mediated. Bcl-2 levels were unchanged. Inhibition of the [Ca(2+)](i) rise with the intracellular Ca(2+) chelator BAPTA blocked caspase/PARP cleavage and cell death induced after activation of TRPM2-L, demonstrating the critical role of [Ca(2+)](i) in mediating these effects. Downregulation of endogenous TRPM2 by RNA interference or increased expression of TRPM2-S inhibited the rise in [Ca(2+)](i), enhanced cell viability, and reduced numbers of apoptotic cells after exposure to oxidative stress or TNF-alpha, demonstrating the physiological importance of TRPM2. Our data show that one mechanism through which oxidative stress or TNF-alpha mediates cell death is activation of TRPM2, resulting in increased [Ca(2+)](i), followed by caspase activation and PARP cleavage. Inhibition of TRPM2-L function by reduction in TRPM2 levels, interaction with TRPM2-S, or Ca(2+) chelation antagonizes this important cell death pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signalling mechanisms mediating Zn2+-induced TRPM2 channel activation and cell death in microglial cells

Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological...

متن کامل

Role of TRPM2 in cell proliferation and susceptibility to oxidative stress.

The transient receptor potential (TRP) channel TRPM2 is an ion channel that modulates cell survival. We report here that full-length (TRPM2-L) and short (TRPM2-S) isoform expression was significantly increased in human neuroblastoma compared with adrenal gland. To differentiate the roles of TRPM2-L and TRPM2-S in cell proliferation and survival, we established neuroblastoma SH-SY5Y cell lines s...

متن کامل

Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis.

Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutat...

متن کامل

A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death.

TRPM2 is a Ca(2+)-permeable channel that is activated by oxidative stress and confers susceptibility to cell death. Here, an isoform of TRPM2 was identified in normal human bone marrow that consists of the TRPM2 N terminus and the first two predicted transmembrane domains. Because of alternative splicing, a stop codon (TAG) is located at the splice junction between exons 16 and 17, resulting in...

متن کامل

Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells.

Apoptosis induction may be a mechanism mediating the anticancer activity of selenium. Our earlier work indicated that distinct cell death pathways are likely involved in apoptosis induced by the CH3SeH and the hydrogen selenide pools of selenium metabolites. To explore the role of caspases in cancer cell apoptosis induced by selenium, we examined the involvement of these molecules in the death ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 290 4  شماره 

صفحات  -

تاریخ انتشار 2006