Semi-supervised Speech Enhancement in Modulation Subspace

نویسندگان

  • Pengfei Sun
  • Jun Qin
چکیده

Previous studies show that existing speech enhancement algorithms can improve speech quality but not speech intelligibility. In this study, we propose a modulation subspace (MS) based speech enhancement framework, in which the spectrogram of noisy speech is decoupled as the product of a spectral envelop subspace and a spectral details subspace. This decoupling approach provides a method to specifically work on elimination of those noises that greatly affect the intelligibility. Two supervised low-rank and sparse decomposition schemes are developed in the spectral envelop subspace to obtain a robust recovery of speech components. A Bayesian formulation of non-negative factorization (NMF) is used to learn the speech dictionary from the spectral envelop subspace of clean speech samples. In the spectral details subspace, a standard robust principle component analysis (RPCA) is implemented to extract the speech components. The validation results show that compared with four state-of-the-art speech enhancement algorithms, including MMSE-SPP, NMF-RPCA, RPCA, and LARC, both proposed MS based algorithms achieve higher perceptual quality, and also demonstrate superiority on improving speech intelligibility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Speech Enhancement Through an Optimized Subspace Division Technique

The speech enhancement techniques are often employed to improve the quality and intelligibility of the noisy speech signals. This paper discusses a novel technique for speech enhancement which is based on Singular Value Decomposition. This implementation utilizes a Genetic Algorithm based optimization method for reducing the effects of environmental noises from the singular vectors as well as t...

متن کامل

Speech Enhancement Through an Optimized Subspace Division Technique

The speech enhancement techniques are often employed to improve the quality and intelligibility of the noisy speech signals. This paper discusses a novel technique for speech enhancement which is based on Singular Value Decomposition. This implementation utilizes a Genetic Algorithm based optimization method for reducing the effects of environmental noises from the singular vectors as well as t...

متن کامل

Sparse, Hierarchical and Semi-Supervised Base Learning for Monaural Enhancement of Conversational Speech

We address the learning of noise bases in a monaural speaker-independent speech enhancement framework based on non-negative matrix factorization. Bases are estimated from training data in batch processing by means of hierarchical and non-hierarchical sparse coding, or determined during the speech enhancement process based on the divergence of the observed noisy speech signal and the speech base...

متن کامل

Statistical Speech Enhancement Based on Probabilistic Integration of Variational Autoencoder and Non-Negative Matrix Factorization

This paper presents a statistical method of single-channel speech enhancement that uses a variational autoencoder (VAE) as a prior distribution on clean speech. A standard approach to speech enhancement is to train a deep neural network (DNN) to take noisy speech as input and output clean speech. Although this supervised approach requires a very large amount of pair data for training, it is not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1609.09443  شماره 

صفحات  -

تاریخ انتشار 2016