Distributed Genetic Programming on GPUs using CUDA
نویسندگان
چکیده
Using of a cluster of Graphics Processing Unit (GPU) equipped computers, it is possible to accelerate the evaluation of individuals in Genetic Programming. Program compilation, fitness case data and fitness execution are spread over the cluster of computers, allowing for the efficient processing of very large datasets. Here, the implementation is demonstrated on datasets containing over 10 million rows and several hundred megabytes in size. Populations of candidate individuals are compiled into NVidia CUDA programs and executed on a set of client computers each with a different subset of the dataset. The paper discusses the implementation of the system and acts as a tutorial for other researchers experimenting with genetic programming and GPUs. Simon Harding Department of Computer Science, Memorial University Canada E-mail: [email protected] Wolfgang Banzhaf Department of Computer Science, Memorial University Canada E-mail: [email protected]
منابع مشابه
Accelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملSolving Classification Problems Using Genetic Programming Algorithms on GPUs
Genetic Programming is very efficient in problem solving compared to other proposals but its performance is very slow when the size of the data increases. This paper proposes a model for multi-threaded Genetic Programming classification evaluation using a NVIDIA CUDA GPUs programming model to parallelize the evaluation phase and reduce computational time. Three different well-known Genetic Prog...
متن کاملAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملSpeeding Up Evolutionary Learning Algorithms using GPUs
This paper propose a multithreaded Genetic Programming classification evaluation model using NVIDIA CUDA GPUs to reduce the computational time due to the poor performance in large problems. Two different classification algorithms are benchmarked using UCI Machine Learning data sets. Experimental results compare the performance using single and multithreaded Java, C and GPU code and show the eff...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009