Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture.
نویسندگان
چکیده
Neurotrophic effects of immunophilin ligands have been shown in animal models of peripheral and central nervous system insult. To investigate the specific growth-promoting effects of these compounds, we examined the effects of various immunophilin ligands on primary dopamine (DA) neurons in culture and compared these with a well-known DA trophic factor, glial cell line-derived neurotrophic factor (GDNF). In neuronal cultures from Embryonic Day 14 ventral mesencephalon, enhanced elongation of DA neurites was observed with immunophilin ligands, which inhibited the phosphatase activity of calcineurin (FK506 and cyclosporin A) when compared to vehicle-treated cultures. This elongation was also observed with GDNF, known to exert its trophic effects through phosphorylation-dependent pathways. In contrast, immunophilin ligands that do not inhibit calcineurin (rapamycin and V-10,367) increased branching of DA neurites, suggesting that elongation is dependent upon maintained phosphorylation while branching is not. In addition, both V-10,367 and rapamycin antagonized the elongation effects of FK506 and induced branching. The antagonism of elongation (and reappearance of branching) illustrates the intrinsic abilities of developing DA neurons to either elongate or branch, but not both. We show that the immunophilin FKBP12 (12-kDa FK506-binding protein) is expressed in ventral mesencephalic neuronal cultures and colocalizes with DA neurons. This work elucidates the specific growth-promoting effects by which GDNF and immunophilin ligands modify developmental growth processes of DA neurons, via their interactions with intracellular targets.
منابع مشابه
Slit promotes branching and elongation of neurites of interneurons but not projection neurons from the developing telencephalon.
Proper neuronal migration and establishment of circuitry are key processes for laying down the functional network of cortical neurons. A variety of environmental guidance cues, attractive or repulsive, have been shown to guide cell migration and axon arborization. One of these, Slit, appears to possess contrarian properties; it can either inhibit axon outgrowth or promote branching and elongati...
متن کاملHeparan sulfate proteoglycan and laminin mediate two different types of neurite outgrowth.
Spinal cord neurons cultured in vitro have been shown to respond to changes in their environment by means of 2 different types of neurite outgrowth: (1) neurite elongation and (2) emergence and branching of newly formed neurites. Culture of spinal cord neurons with heparan sulfate proteoglycan (HSPG) medium resulted in a 3-fold increase in neurite elongation compared to the control. Extensive b...
متن کاملA Novel Small Molecule GDNF Receptor RET Agonist, BT13, Promotes Neurite Growth from Sensory Neurons in Vitro and Attenuates Experimental Neuropathy in the Rat
Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimula...
متن کاملCorneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration.
Purpose To explore the neurotrophic factor expression in corneal epithelium and evaluate their effects on the trigeminal ganglion (TG) neurite outgrowth and corneal nerve regeneration in mice. Methods The expression of neurotrophic factors was compared among the intact, regenerating, and regenerated mouse corneal epithelium. Mouse primary TG neurons were treated with the conditioned medium of...
متن کاملDevelopmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin, and artemin.
The ability of glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin to induce neurite outgrowth from dorsal root, superior cervical, and lumbar sympathetic ganglia from mice at a variety of development stages between embryonic day (E) 11.5 and postnatal day (P) 7 was examined by explanting ganglia onto collagen gels and growing them in the presence of agarose beads impregn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 164 1 شماره
صفحات -
تاریخ انتشار 2000